upgrade to Filament 1.21.0

This commit is contained in:
Nick Fisher
2022-04-14 01:54:33 +08:00
parent f4f7d28388
commit 53ab72bcff
139 changed files with 4410 additions and 20097 deletions

View File

@@ -1,122 +0,0 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef GLTFIO_DEPENDENCY_GRAPH_H
#define GLTFIO_DEPENDENCY_GRAPH_H
#include <utils/Entity.h>
#include <tsl/robin_map.h>
#include <tsl/robin_set.h>
#include <queue>
#include <string>
namespace filament {
class MaterialInstance;
class Texture;
}
namespace gltfio {
/**
* Internal graph that enables FilamentAsset to discover "ready-to-render" entities by tracking
* the loading status of Texture objects that each entity depends on.
*
* Renderables connect to a set of material instances, which in turn connect to a set of parameter
* names, which in turn connect to a set of texture objects. These relationships are not easily
* inspectable using the Filament API or ECS.
*
* One graph corresponds to a single glTF asset. The graph only contains weak references, it does
* not have ownership over any Filament objects. Here's an example:
*
* Entity Entity Entity Entity
* | / \ | /
* | / \ | /
* Material Material Material
* / | \ |
* / | \ |
* Param Param Param Param
* \ / | |
* \ / | |
* Texture Texture Texture
*
* Note that the left-most entity in the above graph has no textures, so it becomes ready as soon as
* finalize is called.
*/
class DependencyGraph {
public:
using Material = filament::MaterialInstance;
using Entity = utils::Entity;
// Pops up to "count" ready-to-render entities off the queue.
// If "result" is non-null, returns the number of written items.
// If "result" is null, returns the number of available entities.
size_t popRenderables(Entity* result, size_t count) noexcept;
// These are called during the initial asset loader phase.
void addEdge(Entity entity, Material* material);
void addEdge(Material* material, const char* parameter);
// This is called at the end of the initial asset loading phase.
// Makes a guarantee that no new material nodes or parameter nodes will be added to the graph.
void finalize();
// This can be called after finalization to allow for dynamic addition of entities.
// It is slower than finalize() because it checks the readiness of existing materials.
void refinalize();
// These are called after textures have created and decoded.
void addEdge(filament::Texture* texture, Material* material, const char* parameter);
void markAsReady(filament::Texture* texture);
private:
struct TextureNode {
filament::Texture* texture;
bool ready;
};
struct MaterialNode {
tsl::robin_map<std::string, TextureNode*> params;
};
struct EntityNode {
tsl::robin_set<Material*> materials;
size_t numReadyMaterials = 0;
};
void checkReadiness(Material* material);
void markAsReady(Material* material);
TextureNode* getStatus(filament::Texture* texture);
// The following maps contain the directed edges in the graph.
tsl::robin_map<Entity, EntityNode> mEntityToMaterial;
tsl::robin_map<Material*, tsl::robin_set<Entity>> mMaterialToEntity;
tsl::robin_map<Material*, MaterialNode> mMaterialToTexture;
tsl::robin_map<filament::Texture*, tsl::robin_set<Material*>> mTextureToMaterial;
// Each texture (and its readiness flag) can be referenced from multiple nodes, so we own
// a collection of wrapper objects in the following map. This uses std::unique_ptr to allow
// nodes to refer to a texture wrapper using a stable weak pointer.
tsl::robin_map<filament::Texture*, std::unique_ptr<TextureNode>> mTextureNodes;
std::queue<Entity> mReadyRenderables;
bool mFinalized = false;
};
} // namespace gltfio
#endif // GLTFIO_DEPENDENCY_GRAPH_H

View File

@@ -1,71 +0,0 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef GLTFIO_DRACO_CACHE_H
#define GLTFIO_DRACO_CACHE_H
#include <cgltf.h>
#include <tsl/robin_map.h>
#include <memory>
#ifndef GLTFIO_DRACO_SUPPORTED
#define GLTFIO_DRACO_SUPPORTED 0
#endif
namespace gltfio {
class DracoMesh;
// Manages a set of Draco meshes that can be looked up using cgltf_buffer_view.
//
// The cache key is the buffer view that holds the compressed data. This allows the loader to
// avoid duplicated work when a single Draco mesh is referenced from multiple primitives.
class DracoCache {
public:
DracoMesh* findOrCreateMesh(const cgltf_buffer_view* key);
private:
tsl::robin_map<const cgltf_buffer_view*, std::unique_ptr<DracoMesh>> mCache;
};
// Decodes a Draco mesh upon construction and retains the results.
//
// The DracoMesh API leverages cgltf accessor structs in a way that bears explanation. These are
// read / write parameters that tell the decoder where to write the decoded data, and what format
// is desired. The buffer_view in the accessor should be null unless decompressed data is already
// loaded. This tells the decoder that it should create a buffer_view and a buffer. The buffer
// view, the buffer, and the buffer's data are all automatically freed when DracoMesh is destroyed.
//
// Note that in the gltfio architecture, the AssetLoader has the job of constructing VertexBuffer
// objects while the ResourceLoader has the job of populating them asychronously. This means that
// our Draco decoder relies on the accessor fields being 100% correct. If we had to be robust
// against faulty accessor information, we would need to replace the VertexBuffer object that was
// created in the AssetLoader, which would be a messy process.
class DracoMesh {
public:
static DracoMesh* decode(const uint8_t* compressedData, size_t compressedSize);
bool getFaceIndices(cgltf_accessor* destination) const;
bool getVertexAttributes(uint32_t attributeId, cgltf_accessor* destination) const;
~DracoMesh();
private:
DracoMesh(struct DracoMeshDetails* details);
std::unique_ptr<struct DracoMeshDetails> mDetails;
};
} // namespace gltfio
#endif // GLTFIO_DRACO_CACHE_H

View File

@@ -1,289 +0,0 @@
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef GLTFIO_FFILAMENTASSET_H
#define GLTFIO_FFILAMENTASSET_H
#include <gltfio/FilamentAsset.h>
#include <filament/Engine.h>
#include <filament/IndexBuffer.h>
#include <filament/MaterialInstance.h>
#include <filament/RenderableManager.h>
#include <filament/Texture.h>
#include <filament/TextureSampler.h>
#include <filament/TransformManager.h>
#include <filament/VertexBuffer.h>
#include <gltfio/MaterialProvider.h>
#include <math/mat4.h>
#include <utils/FixedCapacityVector.h>
#include <utils/CString.h>
#include <utils/Entity.h>
#include <cgltf.h>
#include "upcast.h"
#include "DependencyGraph.h"
#include "DracoCache.h"
#include "FFilamentInstance.h"
#include <tsl/robin_map.h>
#include <tsl/htrie_map.h>
#include <vector>
#ifdef NDEBUG
#define GLTFIO_VERBOSE 0
#define GLTFIO_WARN(msg)
#else
#define GLTFIO_VERBOSE 1
#define GLTFIO_WARN(msg) slog.w << msg << io::endl
#endif
namespace utils {
class NameComponentManager;
class EntityManager;
}
namespace gltfio {
class Animator;
class Wireframe;
class MorphHelper;
// Encapsulates VertexBuffer::setBufferAt() or IndexBuffer::setBuffer().
struct BufferSlot {
const cgltf_accessor* accessor;
cgltf_attribute_type attribute;
int bufferIndex; // for vertex buffers only
filament::VertexBuffer* vertexBuffer;
filament::IndexBuffer* indexBuffer;
};
// Encapsulates a connection between Texture and MaterialInstance.
struct TextureSlot {
const cgltf_texture* texture;
filament::MaterialInstance* materialInstance;
const char* materialParameter;
filament::TextureSampler sampler;
bool srgb;
};
// MeshCache
// ---------
// If a given glTF mesh is referenced by multiple glTF nodes, then it generates a separate Filament
// renderable for each of those nodes. All renderables generated by a given mesh share a common set
// of VertexBuffer and IndexBuffer objects. To achieve the sharing behavior, the loader maintains a
// small cache. The cache keys are glTF mesh definitions and the cache entries are lists of
// primitives, where a "primitive" is a reference to a Filament VertexBuffer and IndexBuffer.
struct Primitive {
filament::VertexBuffer* vertices = nullptr;
filament::IndexBuffer* indices = nullptr;
filament::Aabb aabb; // object-space bounding box
UvMap uvmap; // mapping from each glTF UV set to either UV0 or UV1 (8 bytes)
};
using MeshCache = tsl::robin_map<const cgltf_mesh*, std::vector<Primitive>>;
// MatInstanceCache
// ----------------
// Each glTF material definition corresponds to a single filament::MaterialInstance, which are
// temporarily cached during loading. The filament::Material objects that are used to create instances are
// cached in MaterialProvider. If a given glTF material is referenced by multiple glTF meshes, then
// their corresponding filament primitives will share the same Filament MaterialInstance and UvMap.
// The UvMap is a mapping from each texcoord slot in glTF to one of Filament's 2 texcoord sets.
struct MaterialEntry {
filament::MaterialInstance* instance;
UvMap uvmap;
};
using MatInstanceCache = tsl::robin_map<intptr_t, MaterialEntry>;
struct FFilamentAsset : public FilamentAsset {
FFilamentAsset(filament::Engine* engine, utils::NameComponentManager* names,
utils::EntityManager* entityManager, const cgltf_data* srcAsset) :
mEngine(engine), mNameManager(names), mEntityManager(entityManager) {
mSourceAsset.reset(new SourceAsset {(cgltf_data*)srcAsset});
}
~FFilamentAsset();
size_t getEntityCount() const noexcept {
return mEntities.size();
}
const utils::Entity* getEntities() const noexcept {
return mEntities.empty() ? nullptr : mEntities.data();
}
const utils::Entity* getLightEntities() const noexcept {
return mLightEntities.empty() ? nullptr : mLightEntities.data();
}
size_t getLightEntityCount() const noexcept {
return mLightEntities.size();
}
const utils::Entity* getCameraEntities() const noexcept {
return mCameraEntities.empty() ? nullptr : mCameraEntities.data();
}
size_t getCameraEntityCount() const noexcept {
return mCameraEntities.size();
}
utils::Entity getRoot() const noexcept {
return mRoot;
}
size_t popRenderables(utils::Entity* entities, size_t count) noexcept {
return mDependencyGraph.popRenderables(entities, count);
}
size_t getMaterialInstanceCount() const noexcept {
return mMaterialInstances.size();
}
const filament::MaterialInstance* const* getMaterialInstances() const noexcept {
return mMaterialInstances.data();
}
filament::MaterialInstance* const* getMaterialInstances() noexcept {
return mMaterialInstances.data();
}
size_t getResourceUriCount() const noexcept {
return mResourceUris.size();
}
const char* const* getResourceUris() const noexcept {
return mResourceUris.data();
}
filament::Aabb getBoundingBox() const noexcept {
return mBoundingBox;
}
const char* getName(utils::Entity entity) const noexcept;
const char* getExtras(utils::Entity entity) const noexcept;
utils::Entity getFirstEntityByName(const char* name) noexcept;
size_t getEntitiesByName(const char* name, utils::Entity* entities,
size_t maxCount) const noexcept;
size_t getEntitiesByPrefix(const char* prefix, utils::Entity* entities,
size_t maxCount) const noexcept;
Animator* getAnimator() noexcept;
void setMorphWeights(utils::Entity entity , const float* weights, size_t count) noexcept;
int getMorphTargetCount(utils::Entity entity) noexcept;
utils::Entity getWireframe() noexcept;
filament::Engine* getEngine() const noexcept {
return mEngine;
}
void releaseSourceData() noexcept;
const void* getSourceAsset() const noexcept {
return mSourceAsset.get() ? mSourceAsset->hierarchy : nullptr;
}
FilamentInstance** getAssetInstances() noexcept {
return (FilamentInstance**) mInstances.data();
}
size_t getAssetInstanceCount() const noexcept {
return mInstances.size();
}
void takeOwnership(filament::Texture* texture) {
mTextures.push_back(texture);
}
void bindTexture(const TextureSlot& tb, filament::Texture* texture) {
tb.materialInstance->setParameter(tb.materialParameter, texture, tb.sampler);
mDependencyGraph.addEdge(texture, tb.materialInstance, tb.materialParameter);
}
bool isInstanced() const {
return mInstances.size() > 0;
}
filament::Engine* mEngine;
utils::NameComponentManager* mNameManager;
utils::EntityManager* mEntityManager;
std::vector<utils::Entity> mEntities;
std::vector<utils::Entity> mLightEntities;
std::vector<utils::Entity> mCameraEntities;
std::vector<filament::MaterialInstance*> mMaterialInstances;
std::vector<filament::VertexBuffer*> mVertexBuffers;
std::vector<filament::BufferObject*> mBufferObjects;
std::vector<filament::IndexBuffer*> mIndexBuffers;
std::vector<filament::Texture*> mTextures;
filament::Aabb mBoundingBox;
utils::Entity mRoot;
std::vector<FFilamentInstance*> mInstances;
SkinVector mSkins; // unused for instanced assets
Animator* mAnimator = nullptr;
MorphHelper* mMorpher = nullptr;
Wireframe* mWireframe = nullptr;
bool mResourcesLoaded = false;
DependencyGraph mDependencyGraph;
tsl::htrie_map<char, std::vector<utils::Entity>> mNameToEntity;
tsl::robin_map<utils::Entity, utils::CString> mNodeExtras;
utils::CString mAssetExtras;
// Sentinels for situations where ResourceLoader needs to generate data.
const cgltf_accessor mGenerateNormals = {};
const cgltf_accessor mGenerateTangents = {};
// Encapsulates reference-counted source data, which includes the cgltf hierachy
// and potentially also includes buffer data that can be uploaded to the GPU.
struct SourceAsset {
~SourceAsset() { cgltf_free(hierarchy); }
cgltf_data* hierarchy;
DracoCache dracoCache;
utils::FixedCapacityVector<uint8_t> glbData;
};
// We used shared ownership for the raw cgltf data in order to permit ResourceLoader to
// complete various asynchronous work (e.g. uploading buffers to the GPU) even after the asset
// or ResourceLoader have been destroyed.
using SourceHandle = std::shared_ptr<SourceAsset>;
SourceHandle mSourceAsset;
// Transient source data that can freed via releaseSourceData:
std::vector<BufferSlot> mBufferSlots;
std::vector<TextureSlot> mTextureSlots;
std::vector<const char*> mResourceUris;
NodeMap mNodeMap; // unused for instanced assets
std::vector<std::pair<const cgltf_primitive*, filament::VertexBuffer*> > mPrimitives;
MatInstanceCache mMatInstanceCache;
MeshCache mMeshCache;
};
FILAMENT_UPCAST(FilamentAsset)
} // namespace gltfio
#endif // GLTFIO_FFILAMENTASSET_H

View File

@@ -1,64 +0,0 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef GLTFIO_FFILAMENTINSTANCE_H
#define GLTFIO_FFILAMENTINSTANCE_H
#include <gltfio/FilamentInstance.h>
#include <utils/Entity.h>
#include <math/mat4.h>
#include <tsl/robin_map.h>
#include <string>
#include <vector>
#include "upcast.h"
struct cgltf_node;
namespace gltfio {
struct FFilamentAsset;
class Animator;
struct Skin {
std::string name;
std::vector<filament::math::mat4f> inverseBindMatrices;
std::vector<utils::Entity> joints;
std::vector<utils::Entity> targets;
};
using SkinVector = std::vector<Skin>;
using NodeMap = tsl::robin_map<const cgltf_node*, utils::Entity>;
struct FFilamentInstance : public FilamentInstance {
std::vector<utils::Entity> entities;
utils::Entity root;
Animator* animator;
FFilamentAsset* owner;
SkinVector skins;
NodeMap nodeMap;
Animator* getAnimator() noexcept;
};
FILAMENT_UPCAST(FilamentInstance)
} // namespace gltfio
#endif // GLTFIO_FFILAMENTINSTANCE_H

View File

@@ -41,13 +41,9 @@
#include <camutils/Manipulator.h>
#include <utils/NameComponentManager.h>
#include <utils/JobSystem.h>
#include "math.h"
#include "FFilamentInstance.h"
#include "FFilamentAsset.h"
#include <math/mat4.h>
#include <math/quat.h>
#include <math/scalar.h>
@@ -61,12 +57,6 @@
#include "Log.h"
#include <android/asset_manager.h>
#include <android/asset_manager_jni.h>
#include <android/native_window_jni.h>
#include <android/log.h>
#include <android/native_activity.h>
using namespace filament;
using namespace filament::math;
using namespace gltfio;
@@ -84,18 +74,6 @@ namespace filament
class LightManager;
}
namespace gltfio
{
MaterialProvider *createGPUMorphShaderLoader(
const void *opaqueData,
uint64_t opaqueDataSize,
const void *fadeData,
uint64_t fadeDataSize,
Engine *engine);
void decomposeMatrix(const filament::math::mat4f &mat, filament::math::float3 *translation,
filament::math::quatf *rotation, filament::math::float3 *scale);
}
namespace polyvox
{
@@ -136,14 +114,10 @@ namespace polyvox
FilamentViewer::FilamentViewer(
void *layer,
const char *opaqueShaderPath,
const char *fadeShaderPath,
LoadResource loadResource,
FreeResource freeResource) : _layer(layer),
_loadResource(loadResource),
_freeResource(freeResource),
opaqueShaderResources(nullptr, 0, 0),
fadeShaderResources(nullptr, 0, 0),
_assetBuffer(nullptr, 0, 0)
{
_engine = Engine::create(Engine::Backend::OPENGL);
@@ -205,7 +179,7 @@ namespace polyvox
void FilamentViewer::createSwapChain(void *surface)
{
_swapChain = _engine->createSwapChain(surface);
// Log("swapchain created.");
Log("swapchain created.");
}
void FilamentViewer::destroySwapChain()
@@ -214,8 +188,8 @@ namespace polyvox
{
_engine->destroy(_swapChain);
_swapChain = nullptr;
Log("Swapchain destroyed.");
}
// Log("swapchain destroyed.");
}
void FilamentViewer::applyWeights(float *weights, int count)
@@ -223,8 +197,10 @@ namespace polyvox
for (size_t i = 0, c = _asset->getEntityCount(); i != c; ++i)
{
_asset->setMorphWeights(
_asset->getEntities()[i],
RenderableManager &rm = _engine->getRenderableManager();
auto inst = rm.getInstance(_asset->getEntities()[i]);
rm.setMorphWeights(
inst,
weights,
count);
}
@@ -240,6 +216,7 @@ namespace polyvox
for (size_t i = 0; i < resourceUriCount; i++)
{
string uri = relativeResourcePath + string(resourceUris[i]);
Log("Creating resource buffer for resource at %s",uri.c_str());
ResourceBuffer buf = _loadResource(uri.c_str());
// using FunctionCallback = std::function<void(void*, unsigned int, void *)>;
@@ -273,8 +250,6 @@ namespace polyvox
{
Log("Releasing source data");
_asset->releaseSourceData();
// _freeResource(opaqueShaderResources);
// _freeResource(fadeShaderResources);
}
void FilamentViewer::loadGlb(const char *const uri)
@@ -376,100 +351,99 @@ namespace polyvox
///
bool FilamentViewer::setCamera(const char *cameraName)
{
FFilamentAsset *asset = (FFilamentAsset *)_asset;
gltfio::NodeMap &sourceNodes = asset->isInstanced() ? asset->mInstances[0]->nodeMap
: asset->mNodeMap;
Log("Setting camera to node %s", cameraName);
for (auto pair : sourceNodes)
{
cgltf_node const *node = pair.first;
// gltfio::NodeMap &sourceNodes = _asset->isInstanced() ? asset->mInstances[0]->nodeMap
// : asset->mNodeMap;
// Log("Setting camera to node %s", cameraName);
// for (auto pair : sourceNodes)
// {
// cgltf_node const *node = pair.first;
if (strcmp(cameraName, node->name) != 0)
{
continue;
}
// if (strcmp(cameraName, node->name) != 0)
// {
// continue;
// }
Log("Node %s : Matrix : %03f %03f %03f %03f %03f %03f %03f %03f %03f %03f %03f %03f %03f %03f %03f %03f Translation : %03f %03f %03f Rotation %03f %03f %03f %03f Scale %03f %03f %03f",
node->name,
node->matrix[0],
node->matrix[1],
node->matrix[2],
node->matrix[3],
node->matrix[4],
node->matrix[5],
node->matrix[6],
node->matrix[7],
node->matrix[8],
node->matrix[9],
node->matrix[10],
node->matrix[11],
node->matrix[12],
node->matrix[13],
node->matrix[14],
node->matrix[15],
node->translation[0],
node->translation[1],
node->translation[2],
node->rotation[0],
node->rotation[1],
node->rotation[2],
node->rotation[3],
node->scale[0],
node->scale[1],
node->scale[2]
);
mat4f t = mat4f::translation(float3 { node->translation[0],node->translation[1],node->translation[2] });
mat4f r { quatf { node->rotation[3], node->rotation[0], node->rotation[1], node->rotation[2] } };
mat4f transform = t * r;
// Log("Node %s : Matrix : %03f %03f %03f %03f %03f %03f %03f %03f %03f %03f %03f %03f %03f %03f %03f %03f Translation : %03f %03f %03f Rotation %03f %03f %03f %03f Scale %03f %03f %03f",
// node->name,
// node->matrix[0],
// node->matrix[1],
// node->matrix[2],
// node->matrix[3],
// node->matrix[4],
// node->matrix[5],
// node->matrix[6],
// node->matrix[7],
// node->matrix[8],
// node->matrix[9],
// node->matrix[10],
// node->matrix[11],
// node->matrix[12],
// node->matrix[13],
// node->matrix[14],
// node->matrix[15],
// node->translation[0],
// node->translation[1],
// node->translation[2],
// node->rotation[0],
// node->rotation[1],
// node->rotation[2],
// node->rotation[3],
// node->scale[0],
// node->scale[1],
// node->scale[2]
// );
// mat4f t = mat4f::translation(float3 { node->translation[0],node->translation[1],node->translation[2] });
// mat4f r { quatf { node->rotation[3], node->rotation[0], node->rotation[1], node->rotation[2] } };
// mat4f transform = t * r;
if (!node->camera)
{
cgltf_node* leaf = node->children[0];
// if (!node->camera)
// {
// cgltf_node* leaf = node->children[0];
Log("Child 1 trans : %03f %03f %03f rot : %03f %03f %03f %03f ", leaf->translation[0], leaf->translation[1],leaf->translation[2], leaf->rotation[0],leaf->rotation[1],leaf->rotation[2],leaf->rotation[3]);
// Log("Child 1 trans : %03f %03f %03f rot : %03f %03f %03f %03f ", leaf->translation[0], leaf->translation[1],leaf->translation[2], leaf->rotation[0],leaf->rotation[1],leaf->rotation[2],leaf->rotation[3]);
if (!leaf->camera) {
leaf = leaf->children[0];
Log("Child 2 %03f %03f %03f %03f %03f %03f %03f ", leaf->translation[0], leaf->translation[1],leaf->translation[2], leaf->rotation[0],leaf->rotation[1],leaf->rotation[2],leaf->rotation[3]);
if (!leaf->camera) {
Log("Could not find GLTF camera under node or its ssecond or third child nodes.");
exit(-1);
}
}
// if (!leaf->camera) {
// leaf = leaf->children[0];
// Log("Child 2 %03f %03f %03f %03f %03f %03f %03f ", leaf->translation[0], leaf->translation[1],leaf->translation[2], leaf->rotation[0],leaf->rotation[1],leaf->rotation[2],leaf->rotation[3]);
// if (!leaf->camera) {
// Log("Could not find GLTF camera under node or its ssecond or third child nodes.");
// exit(-1);
// }
// }
Log("Using rotation from leaf node.");
// Log("Using rotation from leaf node.");
mat4f child_rot { quatf { leaf->rotation[3], leaf->rotation[0], leaf->rotation[1], leaf->rotation[2] } };
// mat4f child_rot { quatf { leaf->rotation[3], leaf->rotation[0], leaf->rotation[1], leaf->rotation[2] } };
transform *= child_rot;
}
// transform *= child_rot;
// }
Entity cameraEntity = EntityManager::get().create();
Camera *cam = _engine->createCamera(cameraEntity);
// Entity cameraEntity = EntityManager::get().create();
// Camera *cam = _engine->createCamera(cameraEntity);
const Viewport &vp = _view->getViewport();
// const Viewport &vp = _view->getViewport();
const double aspect = (double)vp.width / vp.height;
// const double aspect = (double)vp.width / vp.height;
// todo - pull focal length from gltf node
// // todo - pull focal length from gltf node
cam->setLensProjection(_cameraFocalLength, aspect, kNearPlane, kFarPlane);
// cam->setLensProjection(_cameraFocalLength, aspect, kNearPlane, kFarPlane);
if (!cam)
{
Log("Couldn't create camera");
}
else
{
_engine->getTransformManager().setTransform(
_engine->getTransformManager().getInstance(cameraEntity), transform
);
// if (!cam)
// {
// Log("Couldn't create camera");
// }
// else
// {
// _engine->getTransformManager().setTransform(
// _engine->getTransformManager().getInstance(cameraEntity), transform
// );
_view->setCamera(cam);
return true;
}
}
// _view->setCamera(cam);
// return true;
// }
// }
return false;
}
@@ -492,34 +466,12 @@ namespace polyvox
StringList FilamentViewer::getTargetNames(const char *meshName)
{
FFilamentAsset *asset = (FFilamentAsset *)_asset;
NodeMap &sourceNodes = asset->isInstanced() ? asset->mInstances[0]->nodeMap : asset->mNodeMap;
if (sourceNodes.empty())
{
Log("Asset source nodes empty?");
return StringList(nullptr, 0);
}
Log("Fetching morph target names for mesh %s", meshName);
for (auto pair : sourceNodes)
{
cgltf_node const *node = pair.first;
cgltf_mesh const *mesh = node->mesh;
if (mesh)
{
Log("Mesh : %s ", mesh->name);
if (strcmp(meshName, mesh->name) == 0)
{
return StringList((const char **)mesh->target_names, (int)mesh->target_names_count);
}
}
}
// int count = asset->getMorphTargetCountAt()
// asset->getMorphTargetNameAt()
return StringList(nullptr, 0);
}
void FilamentViewer::loadSkybox(const char *const skyboxPath, const char *const iblPath, AAssetManager *am)
void FilamentViewer::loadSkybox(const char *const skyboxPath, const char *const iblPath)
{
ResourceBuffer skyboxBuffer = _loadResource(skyboxPath);
@@ -633,7 +585,8 @@ namespace polyvox
const double aspect = (double)width / height;
_mainCamera->setLensProjection(_cameraFocalLength, aspect, kNearPlane, kFarPlane);
Log("Set viewport to %d %d", _width, _height);
Log("Set viewport to width: %d height: %d scaleFactor : %f", width, height, contentScaleFactor);
}
void FilamentViewer::animateWeights(float *data, int numWeights, int numFrames, float frameRate)
@@ -700,74 +653,3 @@ namespace polyvox
}
// //
// //if(morphAnimationBuffer.frameIndex >= morphAnimationBuffer.numFrames) {
// // this.morphAnimationBuffer = null;
// // return;
// //}
// //
// //if(morphAnimationBuffer.frameIndex == -1) {
// // applyWeights(morphAnimationBuffer->frameData, morphAnimationBuffer->numWeights);
// // morphAnimationBuffer->frameIndex++;
// // morphAnimationBuffer->lastTime = std::chrono::high_resolution_clock::now();
// //} else {
// // duration dur = std::chrono::high_resolution_clock::now() - morphAnimationBuffer->lastTime;
// // float msElapsed = dur.count();
// // if(msElapsed > morphAnimationBuffer->frameLength) {
// // frameIndex++;
// // applyWeights(frameData + (frameIndex * numWeights), numWeights);
// // morphAnimationBuffer->lastTime = std::chrono::high_resolution_clock::now();
// // }
// //}
// void FilamentViewer::createMorpher(const char* meshName, int* primitives, int numPrimitives) {
// // morphHelper = new gltfio::GPUMorphHelper((FFilamentAsset*)_asset, meshName, primitives, numPrimitives);
// // morphHelper = new gltfio::CPUMorpher(((FFilamentAsset)*_asset, (FFilamentInstance*)_asset));
// }
// void FilamentViewer::animateBones() {
// }
// Entity entity = _asset->getFirstEntityByName("CC_Base_JawRoot");
// if(!entity) {
// return;
// }
// TransformManager& transformManager = _engine->getTransformManager();
// TransformManager::Instance node = transformManager.getInstance( entity);
// mat4f xform = transformManager.getTransform(node);
// float3 scale;
// quatf rotation;
// float3 translation;
// decomposeMatrix(xform, &translation, &rotation, &scale);
// // const quatf srcQuat { weights[0] * 0.9238,0,weights[0] * 0.3826, 0 };
// // float3 { scale[0] * (1.0f - weights[0]), scale[1] * (1.0f - weights[1]), scale[2] * (1.0f - weights[2]) }
// // xform = composeMatrix(translation + float3 { weights[0], weights[1], weights[2] }, rotation, scale );
// transformManager.setTransform(node, xform);
// }
// void FilamentViewer::updateAnimation(AnimationBuffer animation, std::function<void(int)> callback) {
// if(morphAnimationBuffer.frameIndex >= animation.numFrames) {
// this.animation = null;
// return;
// }
// if(animation.frameIndex == -1) {
// animation->frameIndex++;
// animation->lastTime = std::chrono::high_resolution_clock::now();
// callback(); // applyWeights(morphAnimationBuffer->frameData, morphAnimationBuffer->numWeights);
// } else {
// duration dur = std::chrono::high_resolution_clock::now() - morphAnimationBuffer->lastTime;
// float msElapsed = dur.count();
// if(msElapsed > animation->frameLength) {
// animation->frameIndex++;
// animation->lastTime = std::chrono::high_resolution_clock::now();
// callback(); // applyWeights(frameData + (frameIndex * numWeights), numWeights);
// }
// }
// }

View File

@@ -30,12 +30,6 @@
#include <string>
#include <chrono>
#include <android/asset_manager.h>
#include <android/asset_manager_jni.h>
#include <android/native_window_jni.h>
#include <android/log.h>
#include <android/native_activity.h>
using namespace std;
using namespace filament;
using namespace filament::math;
@@ -102,22 +96,21 @@ namespace polyvox {
class FilamentViewer {
public:
FilamentViewer(void* layer, const char* opaqueShaderPath, const char* fadeShaderPath, LoadResource loadResource, FreeResource freeResource);
FilamentViewer(void* layer, LoadResource loadResource, FreeResource freeResource);
~FilamentViewer();
void loadGlb(const char* const uri);
void loadGltf(const char* const uri, const char* relativeResourcePath);
void loadSkybox(const char* const skyboxUri, const char* const iblUri, AAssetManager* am);
void loadSkybox(const char* const skyboxUri, const char* const iblUri);
void updateViewportAndCameraProjection(int height, int width, float scaleFactor);
void render();
// void createMorpher(const char* meshName, int* primitives, int numPrimitives);
void releaseSourceAssets();
StringList getTargetNames(const char* meshName);
unique_ptr<vector<string>> getAnimationNames();
Manipulator<float>* manipulator;
void applyWeights(float* weights, int count);
void animateWeights(float* data, int numWeights, int length, float frameRate);
// void animateBones();
void playAnimation(int index, bool loop);
bool setCamera(const char* nodeName);
void destroySwapChain();
@@ -136,9 +129,6 @@ namespace polyvox {
LoadResource _loadResource;
FreeResource _freeResource;
ResourceBuffer opaqueShaderResources;
ResourceBuffer fadeShaderResources;
Scene* _scene;
View* _view;
Engine* _engine;

View File

@@ -1,273 +0,0 @@
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef GLTFIO_GLTFENUMS_H
#define GLTFIO_GLTFENUMS_H
#include <filament/IndexBuffer.h>
#include <filament/RenderableManager.h>
#include <filament/TextureSampler.h>
#include <filament/VertexBuffer.h>
#include <cgltf.h>
#define GL_NEAREST 0x2600
#define GL_LINEAR 0x2601
#define GL_NEAREST_MIPMAP_NEAREST 0x2700
#define GL_LINEAR_MIPMAP_NEAREST 0x2701
#define GL_NEAREST_MIPMAP_LINEAR 0x2702
#define GL_LINEAR_MIPMAP_LINEAR 0x2703
#define GL_REPEAT 0x2901
#define GL_MIRRORED_REPEAT 0x8370
#define GL_CLAMP_TO_EDGE 0x812F
inline filament::TextureSampler::WrapMode getWrapMode(cgltf_int wrap) {
switch (wrap) {
case GL_REPEAT:
return filament::TextureSampler::WrapMode::REPEAT;
case GL_MIRRORED_REPEAT:
return filament::TextureSampler::WrapMode::MIRRORED_REPEAT;
case GL_CLAMP_TO_EDGE:
return filament::TextureSampler::WrapMode::CLAMP_TO_EDGE;
}
return filament::TextureSampler::WrapMode::REPEAT;
}
inline filament::TextureSampler::MinFilter getMinFilter(cgltf_int minFilter) {
switch (minFilter) {
case GL_NEAREST:
return filament::TextureSampler::MinFilter::NEAREST;
case GL_LINEAR:
return filament::TextureSampler::MinFilter::LINEAR;
case GL_NEAREST_MIPMAP_NEAREST:
return filament::TextureSampler::MinFilter::NEAREST_MIPMAP_NEAREST;
case GL_LINEAR_MIPMAP_NEAREST:
return filament::TextureSampler::MinFilter::LINEAR_MIPMAP_NEAREST;
case GL_NEAREST_MIPMAP_LINEAR:
return filament::TextureSampler::MinFilter::NEAREST_MIPMAP_LINEAR;
case GL_LINEAR_MIPMAP_LINEAR:
return filament::TextureSampler::MinFilter::LINEAR_MIPMAP_LINEAR;
}
return filament::TextureSampler::MinFilter::LINEAR_MIPMAP_LINEAR;
}
inline filament::TextureSampler::MagFilter getMagFilter(cgltf_int magFilter) {
switch (magFilter) {
case GL_NEAREST:
return filament::TextureSampler::MagFilter::NEAREST;
case GL_LINEAR:
return filament::TextureSampler::MagFilter::LINEAR;
}
return filament::TextureSampler::MagFilter::LINEAR;
}
inline bool getVertexAttrType(cgltf_attribute_type atype, filament::VertexAttribute* attrType) {
switch (atype) {
case cgltf_attribute_type_position:
*attrType = filament::VertexAttribute::POSITION;
return true;
case cgltf_attribute_type_texcoord:
*attrType = filament::VertexAttribute::UV0;
return true;
case cgltf_attribute_type_color:
*attrType = filament::VertexAttribute::COLOR;
return true;
case cgltf_attribute_type_joints:
*attrType = filament::VertexAttribute::BONE_INDICES;
return true;
case cgltf_attribute_type_weights:
*attrType = filament::VertexAttribute::BONE_WEIGHTS;
return true;
case cgltf_attribute_type_normal:
case cgltf_attribute_type_tangent:
default:
return false;
}
}
inline bool getIndexType(cgltf_component_type ctype, filament::IndexBuffer::IndexType* itype) {
switch (ctype) {
case cgltf_component_type_r_8u:
case cgltf_component_type_r_16u:
*itype = filament::IndexBuffer::IndexType::USHORT;
return true;
case cgltf_component_type_r_32u:
*itype = filament::IndexBuffer::IndexType::UINT;
return true;
default:
break;
}
return false;
}
inline bool getPrimitiveType(cgltf_primitive_type in,
filament::RenderableManager::PrimitiveType* out) {
switch (in) {
case cgltf_primitive_type_points:
*out = filament::RenderableManager::PrimitiveType::POINTS;
return true;
case cgltf_primitive_type_lines:
*out = filament::RenderableManager::PrimitiveType::LINES;
return true;
case cgltf_primitive_type_line_strip:
*out = filament::RenderableManager::PrimitiveType::LINE_STRIP;
return true;
case cgltf_primitive_type_triangles:
*out = filament::RenderableManager::PrimitiveType::TRIANGLES;
return true;
case cgltf_primitive_type_triangle_strip:
*out = filament::RenderableManager::PrimitiveType::TRIANGLE_STRIP;
return true;
case cgltf_primitive_type_line_loop:
case cgltf_primitive_type_triangle_fan:
return false;
}
return false;
}
// This converts a cgltf component type into a Filament Attribute type.
//
// This function has two out parameters. One result is a safe "permitted type" which we know is
// universally accepted across GPU's and backends, but may require conversion (see Transcoder). The
// other result is the "actual type" which requires no conversion.
//
// Returns false if the given component type is invalid.
inline bool getElementType(cgltf_type type, cgltf_component_type ctype,
filament::VertexBuffer::AttributeType* permitType,
filament::VertexBuffer::AttributeType* actualType) {
switch (type) {
case cgltf_type_scalar:
switch (ctype) {
case cgltf_component_type_r_8:
*permitType = filament::VertexBuffer::AttributeType::BYTE;
*actualType = filament::VertexBuffer::AttributeType::BYTE;
return true;
case cgltf_component_type_r_8u:
*permitType = filament::VertexBuffer::AttributeType::UBYTE;
*actualType = filament::VertexBuffer::AttributeType::UBYTE;
return true;
case cgltf_component_type_r_16:
*permitType = filament::VertexBuffer::AttributeType::SHORT;
*actualType = filament::VertexBuffer::AttributeType::SHORT;
return true;
case cgltf_component_type_r_16u:
*permitType = filament::VertexBuffer::AttributeType::USHORT;
*actualType = filament::VertexBuffer::AttributeType::USHORT;
return true;
case cgltf_component_type_r_32u:
*permitType = filament::VertexBuffer::AttributeType::UINT;
*actualType = filament::VertexBuffer::AttributeType::UINT;
return true;
case cgltf_component_type_r_32f:
*permitType = filament::VertexBuffer::AttributeType::FLOAT;
*actualType = filament::VertexBuffer::AttributeType::FLOAT;
return true;
default:
return false;
}
break;
case cgltf_type_vec2:
switch (ctype) {
case cgltf_component_type_r_8:
*permitType = filament::VertexBuffer::AttributeType::BYTE2;
*actualType = filament::VertexBuffer::AttributeType::BYTE2;
return true;
case cgltf_component_type_r_8u:
*permitType = filament::VertexBuffer::AttributeType::UBYTE2;
*actualType = filament::VertexBuffer::AttributeType::UBYTE2;
return true;
case cgltf_component_type_r_16:
*permitType = filament::VertexBuffer::AttributeType::SHORT2;
*actualType = filament::VertexBuffer::AttributeType::SHORT2;
return true;
case cgltf_component_type_r_16u:
*permitType = filament::VertexBuffer::AttributeType::USHORT2;
*actualType = filament::VertexBuffer::AttributeType::USHORT2;
return true;
case cgltf_component_type_r_32f:
*permitType = filament::VertexBuffer::AttributeType::FLOAT2;
*actualType = filament::VertexBuffer::AttributeType::FLOAT2;
return true;
default:
return false;
}
break;
case cgltf_type_vec3:
switch (ctype) {
case cgltf_component_type_r_8:
*permitType = filament::VertexBuffer::AttributeType::FLOAT3;
*actualType = filament::VertexBuffer::AttributeType::BYTE3;
return true;
case cgltf_component_type_r_8u:
*permitType = filament::VertexBuffer::AttributeType::FLOAT3;
*actualType = filament::VertexBuffer::AttributeType::UBYTE3;
return true;
case cgltf_component_type_r_16:
*permitType = filament::VertexBuffer::AttributeType::FLOAT3;
*actualType = filament::VertexBuffer::AttributeType::SHORT3;
return true;
case cgltf_component_type_r_16u:
*permitType = filament::VertexBuffer::AttributeType::FLOAT3;
*actualType = filament::VertexBuffer::AttributeType::USHORT3;
return true;
case cgltf_component_type_r_32f:
*permitType = filament::VertexBuffer::AttributeType::FLOAT3;
*actualType = filament::VertexBuffer::AttributeType::FLOAT3;
return true;
default:
return false;
}
break;
case cgltf_type_vec4:
switch (ctype) {
case cgltf_component_type_r_8:
*permitType = filament::VertexBuffer::AttributeType::BYTE4;
*actualType = filament::VertexBuffer::AttributeType::BYTE4;
return true;
case cgltf_component_type_r_8u:
*permitType = filament::VertexBuffer::AttributeType::UBYTE4;
*actualType = filament::VertexBuffer::AttributeType::UBYTE4;
return true;
case cgltf_component_type_r_16:
*permitType = filament::VertexBuffer::AttributeType::SHORT4;
*actualType = filament::VertexBuffer::AttributeType::SHORT4;
return true;
case cgltf_component_type_r_16u:
*permitType = filament::VertexBuffer::AttributeType::USHORT4;
*actualType = filament::VertexBuffer::AttributeType::USHORT4;
return true;
case cgltf_component_type_r_32f:
*permitType = filament::VertexBuffer::AttributeType::FLOAT4;
*actualType = filament::VertexBuffer::AttributeType::FLOAT4;
return true;
default:
return false;
}
break;
default:
return false;
}
return false;
}
inline bool requiresConversion(cgltf_type type, cgltf_component_type ctype) {
filament::VertexBuffer::AttributeType permitted;
filament::VertexBuffer::AttributeType actual;
bool supported = getElementType(type, ctype, &permitted, &actual);
return supported && permitted != actual;
}
#endif // GLTFIO_GLTFENUMS_H

View File

@@ -16,10 +16,10 @@ void Log(const char *fmt, ...) {
#elif defined __OBJC__
NSString *format = [[NSString alloc] initWithUTF8String:fmt];
NSLogv(format, args);
[format release];
#else
printf(fmt, args);
vprintf(fmt, args);
printf("\n");
#endif
va_end(args);
}
}

View File

@@ -1,73 +0,0 @@
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef GLTFIO_MORPHHELPER_H
#define GLTFIO_MORPHHELPER_H
#include "FFilamentAsset.h"
#include "FFilamentInstance.h"
#include <filament/MorphTargetBuffer.h>
#include <math/vec4.h>
#include <tsl/robin_map.h>
#include <vector>
struct cgltf_node;
struct cgltf_mesh;
struct cgltf_primitive;
namespace gltfio {
/**
* Internal class that partitions lists of morph weights and maintains a cache of BufferObject
* instances. This allows gltfio to support up to 255 morph targets.
*
* Each partition is associated with an unordered set of 4 (or fewer) morph target indices, which
* we call the "primary indices" for that time slice.
*
* Animator has ownership over a single instance of MorphHelper, thus it is 1:1 with FilamentAsset.
*/
class MorphHelper {
public:
using Entity = utils::Entity;
MorphHelper(FFilamentAsset* asset, FFilamentInstance* inst);
~MorphHelper();
void setWeights(Entity entity, float const* weights, int count) noexcept;
int getTargetCount(Entity entity) const noexcept;
private:
struct GltfPrimitive {
filament::MorphTargetBuffer* targets;
};
struct TableEntry {
std::vector<GltfPrimitive> primitives; // TODO: flatten this?
};
void addPrimitive(cgltf_mesh const* mesh, int primitiveIndex, Entity entity);
tsl::robin_map<Entity, TableEntry> mMorphTable;
const FFilamentAsset* mAsset;
const FFilamentInstance* mInstance;
};
} // namespace gltfio
#endif // GLTFIO_MORPHHELPER_H

View File

@@ -1,66 +0,0 @@
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cgltf.h>
#include <math/vec4.h>
namespace filament { class VertexBuffer; }
namespace gltfio {
/**
* Internal helper that examines a cgltf primitive and generates data suitable for Filament's
* TANGENTS attribute. This has been designed to be run as a JobSystem job, but clients are not
* required to do so.
*/
struct TangentsJob {
static constexpr int kMorphTargetUnused = -1;
// The inputs to the procedure. The prim is owned by the client, which should ensure that it
// stays alive for the duration of the procedure.
struct InputParams {
const cgltf_primitive* prim;
const int morphTargetIndex = kMorphTargetUnused;
};
// The context of the procedure. These fields are not used by the procedure but are provided as
// a convenience to clients. You can think of this as a scratch space for clients.
struct Context {
filament::VertexBuffer* const vb;
const uint8_t slot;
};
// The outputs of the procedure. The results array gets malloc'd by the procedure, so clients
// should remember to free it.
struct OutputParams {
cgltf_size vertexCount;
filament::math::short4* results;
};
// Clients might want to track the jobs in an array, so the arguments are bundled into a struct.
struct Params {
InputParams in;
Context context;
OutputParams out;
};
// Performs tangents generation synchronously. This can be invoked from inside a job if desired.
// The parameters structure is owned by the client.
static void run(Params* params);
};
} // namespace gltfio

View File

@@ -1,40 +0,0 @@
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef GLTFIO_WIREFRAME_H
#define GLTFIO_WIREFRAME_H
#include <filament/IndexBuffer.h>
#include <filament/VertexBuffer.h>
#include <utils/Entity.h>
namespace gltfio {
struct FFilamentAsset;
struct Wireframe {
Wireframe(FFilamentAsset* asset);
~Wireframe();
const FFilamentAsset* mAsset;
utils::Entity mEntity;
filament::VertexBuffer* mVertexBuffer;
filament::IndexBuffer* mIndexBuffer;
};
} // namsepace gltfio
#endif // GLTFIO_WIREFRAME_H

View File

@@ -1,48 +0,0 @@
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef TNT_FILAMENT_UPCAST_H
#define TNT_FILAMENT_UPCAST_H
/*
* Generates functions to safely upcast a pointer Bar* to FBar*
* FILAMENT_UPCAST() should be included in the header file
* declaring FBar, e.g.:
*
* #include <Bar.h>
*
* class FBar : public Bar {
* };
*
* FILAMENT_UPCAST(Bar)
*
*/
#define FILAMENT_UPCAST(CLASS) \
inline F##CLASS& upcast(CLASS& that) noexcept { \
return static_cast<F##CLASS &>(that); \
} \
inline const F##CLASS& upcast(const CLASS& that) noexcept { \
return static_cast<const F##CLASS &>(that); \
} \
inline F##CLASS* upcast(CLASS* that) noexcept { \
return static_cast<F##CLASS *>(that); \
} \
inline F##CLASS const* upcast(CLASS const* that) noexcept { \
return static_cast<F##CLASS const *>(that); \
}
#endif // TNT_FILAMENT_UPCAST_H