add texture methods (including unproject)
This commit is contained in:
@@ -31,6 +31,7 @@
|
||||
#include "Log.hpp"
|
||||
#include "SceneManager.hpp"
|
||||
#include "CustomGeometry.hpp"
|
||||
#include "UnprojectTexture.hpp"
|
||||
|
||||
extern "C"
|
||||
{
|
||||
@@ -217,8 +218,9 @@ namespace thermion_filament
|
||||
FilamentInstance *inst = asset->getInstance();
|
||||
inst->getAnimator()->updateBoneMatrices();
|
||||
inst->recomputeBoundingBoxes();
|
||||
|
||||
if(!keepData) {
|
||||
|
||||
if (!keepData)
|
||||
{
|
||||
asset->releaseSourceData();
|
||||
}
|
||||
|
||||
@@ -292,7 +294,8 @@ namespace thermion_filament
|
||||
_instances.emplace(instanceEntityId, inst);
|
||||
}
|
||||
|
||||
if(!keepData) {
|
||||
if (!keepData)
|
||||
{
|
||||
asset->releaseSourceData();
|
||||
}
|
||||
|
||||
@@ -362,7 +365,8 @@ namespace thermion_filament
|
||||
const auto asset = pos->second;
|
||||
auto instance = _assetLoader->createInstance(asset);
|
||||
|
||||
if(!instance) {
|
||||
if (!instance)
|
||||
{
|
||||
Log("Failed to create instance");
|
||||
return 0;
|
||||
}
|
||||
@@ -497,6 +501,12 @@ namespace thermion_filament
|
||||
asset.second->getLightEntityCount());
|
||||
_assetLoader->destroyAsset(asset.second);
|
||||
}
|
||||
for(auto* texture : _textures) {
|
||||
_engine->destroy(texture);
|
||||
}
|
||||
|
||||
// TODO - free geometry?
|
||||
_textures.clear();
|
||||
_assets.clear();
|
||||
}
|
||||
|
||||
@@ -608,6 +618,7 @@ namespace thermion_filament
|
||||
|
||||
auto entity = Entity::import(entityId);
|
||||
|
||||
|
||||
if (_animationComponentManager->hasComponent(entity))
|
||||
{
|
||||
_animationComponentManager->removeComponent(entity);
|
||||
@@ -620,6 +631,10 @@ namespace thermion_filament
|
||||
|
||||
_scene->remove(entity);
|
||||
|
||||
if(isGeometryEntity(entityId)) {
|
||||
return;
|
||||
}
|
||||
|
||||
const auto *instance = getInstanceByEntityId(entityId);
|
||||
|
||||
if (instance)
|
||||
@@ -645,7 +660,6 @@ namespace thermion_filament
|
||||
|
||||
if (!asset)
|
||||
{
|
||||
Log("ERROR: could not find FilamentInstance or FilamentAsset associated with the given entity id");
|
||||
return;
|
||||
}
|
||||
_assets.erase(entityId);
|
||||
@@ -1288,78 +1302,100 @@ namespace thermion_filament
|
||||
animationComponent.gltfAnimations.end());
|
||||
}
|
||||
|
||||
void SceneManager::loadTexture(EntityId entity, const char *resourcePath, int renderableIndex)
|
||||
Texture *SceneManager::createTexture(const uint8_t *data, size_t length, const char *name)
|
||||
{
|
||||
using namespace filament;
|
||||
|
||||
// const auto &pos = _instances.find(entity);
|
||||
// if (pos == _instances.end())
|
||||
// {
|
||||
// Log("ERROR: asset not found for entity.");
|
||||
// return;
|
||||
// }
|
||||
// const auto *instance = pos->second;
|
||||
// Create an input stream from the data
|
||||
std::istringstream stream(std::string(reinterpret_cast<const char *>(data), length));
|
||||
|
||||
// Log("Loading texture at %s for renderableIndex %d", resourcePath, renderableIndex);
|
||||
// Decode the image
|
||||
image::LinearImage linearImage = image::ImageDecoder::decode(stream, name, image::ImageDecoder::ColorSpace::SRGB);
|
||||
|
||||
// string rp(resourcePath);
|
||||
if (!linearImage.isValid())
|
||||
{
|
||||
Log("Failed to decode image.");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// if (asset.texture)
|
||||
// {
|
||||
// _engine->destroy(asset.texture);
|
||||
// asset.texture = nullptr;
|
||||
// }
|
||||
uint32_t w = linearImage.getWidth();
|
||||
uint32_t h = linearImage.getHeight();
|
||||
uint32_t channels = linearImage.getChannels();
|
||||
|
||||
// ResourceBuffer imageResource = _resourceLoaderWrapper->load(rp.c_str());
|
||||
Texture::InternalFormat textureFormat = channels == 3 ? Texture::InternalFormat::RGB16F
|
||||
: Texture::InternalFormat::RGBA16F;
|
||||
Texture::Format bufferFormat = channels == 3 ? Texture::Format::RGB
|
||||
: Texture::Format::RGBA;
|
||||
|
||||
// StreamBufferAdapter sb((char *)imageResource.data, (char *)imageResource.data + imageResource.size);
|
||||
Texture *texture = Texture::Builder()
|
||||
.width(w)
|
||||
.height(h)
|
||||
.levels(1)
|
||||
.format(textureFormat)
|
||||
.sampler(Texture::Sampler::SAMPLER_2D)
|
||||
.build(*_engine);
|
||||
|
||||
// istream *inputStream = new std::istream(&sb);
|
||||
if (!texture)
|
||||
{
|
||||
Log("Failed to create texture: ");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// LinearImage *image = new LinearImage(ImageDecoder::decode(
|
||||
// *inputStream, rp.c_str(), ImageDecoder::ColorSpace::SRGB));
|
||||
Texture::PixelBufferDescriptor buffer(
|
||||
linearImage.getPixelRef(),
|
||||
size_t(w * h * channels * sizeof(float)),
|
||||
bufferFormat,
|
||||
Texture::Type::FLOAT);
|
||||
|
||||
// if (!image->isValid())
|
||||
// {
|
||||
// Log("Invalid image : %s", rp.c_str());
|
||||
// delete inputStream;
|
||||
// _resourceLoaderWrapper->free(imageResource);
|
||||
// return;
|
||||
// }
|
||||
texture->setImage(*_engine, 0, std::move(buffer));
|
||||
|
||||
// uint32_t channels = image->getChannels();
|
||||
// uint32_t w = image->getWidth();
|
||||
// uint32_t h = image->getHeight();
|
||||
// asset.texture = Texture::Builder()
|
||||
// .width(w)
|
||||
// .height(h)
|
||||
// .levels(0xff)
|
||||
// .format(channels == 3 ? Texture::InternalFormat::RGB16F
|
||||
// : Texture::InternalFormat::RGBA16F)
|
||||
// .sampler(Texture::Sampler::SAMPLER_2D)
|
||||
// .build(*_engine);
|
||||
Log("Created texture: %s (%d x %d, %d channels)", name, w, h, channels);
|
||||
|
||||
// Texture::PixelBufferDescriptor::Callback freeCallback = [](void *buf, size_t,
|
||||
// void *data)
|
||||
// {
|
||||
// delete reinterpret_cast<LinearImage *>(data);
|
||||
// };
|
||||
_textures.insert(texture);
|
||||
|
||||
// Texture::PixelBufferDescriptor buffer(
|
||||
// image->getPixelRef(), size_t(w * h * channels * sizeof(float)),
|
||||
// channels == 3 ? Texture::Format::RGB : Texture::Format::RGBA,
|
||||
// Texture::Type::FLOAT, freeCallback);
|
||||
return texture;
|
||||
}
|
||||
|
||||
// asset.texture->setImage(*_engine, 0, std::move(buffer));
|
||||
// MaterialInstance *const *inst = instance->getMaterialInstances();
|
||||
// size_t mic = instance->getMaterialInstanceCount();
|
||||
// Log("Material instance count : %d", mic);
|
||||
bool SceneManager::applyTexture(EntityId entityId, Texture *texture, const char* parameterName, int materialIndex)
|
||||
{
|
||||
auto entity = Entity::import(entityId);
|
||||
|
||||
// auto sampler = TextureSampler();
|
||||
// inst[0]->setParameter("baseColorIndex", 0);
|
||||
// inst[0]->setParameter("baseColorMap", asset.texture, sampler);
|
||||
// delete inputStream;
|
||||
if (entity.isNull())
|
||||
{
|
||||
Log("Entity %d is null?", entityId);
|
||||
return false;
|
||||
}
|
||||
|
||||
// _resourceLoaderWrapper->free(imageResource);
|
||||
RenderableManager &rm = _engine->getRenderableManager();
|
||||
|
||||
auto renderable = rm.getInstance(entity);
|
||||
|
||||
if (!renderable.isValid())
|
||||
{
|
||||
Log("Renderable not valid, was the entity id correct (%d)?", entityId);
|
||||
return false;
|
||||
}
|
||||
|
||||
MaterialInstance *mi = rm.getMaterialInstanceAt(renderable, materialIndex);
|
||||
|
||||
if (!mi)
|
||||
{
|
||||
Log("ERROR: material index must be less than number of material instances");
|
||||
return false;
|
||||
}
|
||||
|
||||
auto sampler = TextureSampler();
|
||||
mi->setParameter(parameterName, texture, sampler);
|
||||
Log("Applied texture to entity %d", entityId);
|
||||
return true;
|
||||
}
|
||||
|
||||
void SceneManager::destroyTexture(Texture* texture) {
|
||||
if(_textures.find(texture) == _textures.end()) {
|
||||
Log("Warning: couldn't find texture");
|
||||
}
|
||||
_textures.erase(texture);
|
||||
_engine->destroy(texture);
|
||||
}
|
||||
|
||||
void SceneManager::setAnimationFrame(EntityId entityId, int animationIndex, int animationFrame)
|
||||
@@ -1549,10 +1585,12 @@ namespace thermion_filament
|
||||
const auto child = Entity::import(childEntityId);
|
||||
auto transformInstance = tm.getInstance(child);
|
||||
Entity parent;
|
||||
|
||||
while(true) {
|
||||
|
||||
while (true)
|
||||
{
|
||||
auto newParent = tm.getParent(transformInstance);
|
||||
if(newParent.isNull()) {
|
||||
if (newParent.isNull())
|
||||
{
|
||||
break;
|
||||
}
|
||||
parent = newParent;
|
||||
@@ -1571,12 +1609,14 @@ namespace thermion_filament
|
||||
const auto &parentInstance = tm.getInstance(parent);
|
||||
const auto &childInstance = tm.getInstance(child);
|
||||
|
||||
if(!parentInstance.isValid()) {
|
||||
if (!parentInstance.isValid())
|
||||
{
|
||||
Log("Parent instance is not valid");
|
||||
return;
|
||||
}
|
||||
|
||||
if(!childInstance.isValid()) {
|
||||
if (!childInstance.isValid())
|
||||
{
|
||||
Log("Child instance is not valid");
|
||||
return;
|
||||
}
|
||||
@@ -1843,170 +1883,174 @@ namespace thermion_filament
|
||||
tm.setTransform(transformInstance, newTransform);
|
||||
}
|
||||
|
||||
void SceneManager::queueRelativePositionUpdateFromViewportVector(EntityId entityId, float viewportCoordX, float viewportCoordY)
|
||||
{
|
||||
// Get the camera and viewport
|
||||
const auto &camera = _view->getCamera();
|
||||
const auto &vp = _view->getViewport();
|
||||
|
||||
// Convert viewport coordinates to NDC space
|
||||
float ndcX = (2.0f * viewportCoordX) / vp.width - 1.0f;
|
||||
float ndcY = 1.0f - (2.0f * viewportCoordY) / vp.height;
|
||||
|
||||
// Get the current position of the entity
|
||||
auto &tm = _engine->getTransformManager();
|
||||
auto entity = Entity::import(entityId);
|
||||
auto transformInstance = tm.getInstance(entity);
|
||||
auto currentTransform = tm.getTransform(transformInstance);
|
||||
|
||||
// get entity model origin in camera space
|
||||
auto entityPositionInCameraSpace = camera.getViewMatrix() * currentTransform * filament::math::float4 { 0.0f, 0.0f, 0.0f, 1.0f };
|
||||
// get entity model origin in clip space
|
||||
auto entityPositionInClipSpace = camera.getProjectionMatrix() * entityPositionInCameraSpace;
|
||||
auto entityPositionInNdcSpace = entityPositionInClipSpace / entityPositionInClipSpace.w;
|
||||
|
||||
// Viewport coords in NDC space (use entity position in camera space Z to project onto near plane)
|
||||
math::float4 ndcNearPlanePos = {ndcX, ndcY, -1.0f, 1.0f};
|
||||
math::float4 ndcFarPlanePos = {ndcX, ndcY, 0.99f, 1.0f};
|
||||
math::float4 ndcEntityPlanePos = {ndcX, ndcY, entityPositionInNdcSpace.z, 1.0f};
|
||||
|
||||
// Get viewport coords in clip space
|
||||
math::float4 nearPlaneInClipSpace = Camera::inverseProjection(camera.getProjectionMatrix()) * ndcNearPlanePos;
|
||||
auto nearPlaneInCameraSpace = nearPlaneInClipSpace / nearPlaneInClipSpace.w;
|
||||
math::float4 farPlaneInClipSpace = Camera::inverseProjection(camera.getProjectionMatrix()) * ndcFarPlanePos;
|
||||
auto farPlaneInCameraSpace = farPlaneInClipSpace / farPlaneInClipSpace.w;
|
||||
math::float4 entityPlaneInClipSpace = Camera::inverseProjection(camera.getProjectionMatrix()) * ndcEntityPlanePos;
|
||||
auto entityPlaneInCameraSpace = entityPlaneInClipSpace / entityPlaneInClipSpace.w;
|
||||
auto entityPlaneInWorldSpace = camera.getModelMatrix() * entityPlaneInCameraSpace;
|
||||
|
||||
// Queue the position update (as a relative movement)
|
||||
queuePositionUpdate(entityId, entityPlaneInWorldSpace.x, entityPlaneInWorldSpace.y, entityPlaneInWorldSpace.z, false);
|
||||
}
|
||||
void SceneManager::queueRelativePositionUpdateWorldAxis(EntityId entity, float viewportCoordX, float viewportCoordY, float x, float y, float z)
|
||||
{
|
||||
auto worldAxis = math::float3{x, y, z};
|
||||
|
||||
// Get the camera
|
||||
const auto &camera = _view->getCamera();
|
||||
const auto &vp = _view->getViewport();
|
||||
auto viewMatrix = camera.getViewMatrix();
|
||||
|
||||
math::float3 cameraPosition = camera.getPosition();
|
||||
math::float3 cameraForward = -viewMatrix.upperLeft()[2];
|
||||
|
||||
// Scale the viewport movement to NDC coordinates view axis
|
||||
math::float2 viewportMovementNDC(viewportCoordX / (vp.width / 2), viewportCoordY / (vp.height / 2));
|
||||
|
||||
// calculate the translation axis in view space
|
||||
math::float3 viewSpaceAxis = viewMatrix.upperLeft() * worldAxis;
|
||||
|
||||
// Apply projection matrix to get clip space axis
|
||||
math::float4 clipAxis = camera.getProjectionMatrix() * math::float4(viewSpaceAxis, 0.0f);
|
||||
|
||||
// Perform perspective division to get the translation axis in normalized device coordinates (NDC)
|
||||
math::float2 ndcAxis = (clipAxis.xyz / clipAxis.w).xy;
|
||||
|
||||
const float epsilon = 1e-6f;
|
||||
bool isAligned = false;
|
||||
if (std::isnan(ndcAxis.x) || std::isnan(ndcAxis.y) || length(ndcAxis) < epsilon || std::abs(dot(normalize(worldAxis), cameraForward)) > 0.99f)
|
||||
void SceneManager::queueRelativePositionUpdateFromViewportVector(EntityId entityId, float viewportCoordX, float viewportCoordY)
|
||||
{
|
||||
isAligned = true;
|
||||
// Find a suitable perpendicular axis:
|
||||
math::float3 perpendicularAxis;
|
||||
if (std::abs(worldAxis.x) < epsilon && std::abs(worldAxis.z) < epsilon)
|
||||
{
|
||||
// If worldAxis is (0, y, 0), use (1, 0, 0)
|
||||
perpendicularAxis = {1.0f, 0.0f, 0.0f};
|
||||
}
|
||||
else
|
||||
{
|
||||
// Otherwise, calculate a perpendicular vector
|
||||
perpendicularAxis = normalize(cross(cameraForward, worldAxis));
|
||||
}
|
||||
// Get the camera and viewport
|
||||
const auto &camera = _view->getCamera();
|
||||
const auto &vp = _view->getViewport();
|
||||
|
||||
ndcAxis = (camera.getProjectionMatrix() * math::float4(viewMatrix.upperLeft() * perpendicularAxis, 0.0f)).xy;
|
||||
// Convert viewport coordinates to NDC space
|
||||
float ndcX = (2.0f * viewportCoordX) / vp.width - 1.0f;
|
||||
float ndcY = 1.0f - (2.0f * viewportCoordY) / vp.height;
|
||||
|
||||
if (std::isnan(ndcAxis.x) || std::isnan(ndcAxis.y)) {
|
||||
return;
|
||||
}
|
||||
// Get the current position of the entity
|
||||
auto &tm = _engine->getTransformManager();
|
||||
auto entity = Entity::import(entityId);
|
||||
auto transformInstance = tm.getInstance(entity);
|
||||
auto currentTransform = tm.getTransform(transformInstance);
|
||||
|
||||
// get entity model origin in camera space
|
||||
auto entityPositionInCameraSpace = camera.getViewMatrix() * currentTransform * filament::math::float4{0.0f, 0.0f, 0.0f, 1.0f};
|
||||
// get entity model origin in clip space
|
||||
auto entityPositionInClipSpace = camera.getProjectionMatrix() * entityPositionInCameraSpace;
|
||||
auto entityPositionInNdcSpace = entityPositionInClipSpace / entityPositionInClipSpace.w;
|
||||
|
||||
// Viewport coords in NDC space (use entity position in camera space Z to project onto near plane)
|
||||
math::float4 ndcNearPlanePos = {ndcX, ndcY, -1.0f, 1.0f};
|
||||
math::float4 ndcFarPlanePos = {ndcX, ndcY, 0.99f, 1.0f};
|
||||
math::float4 ndcEntityPlanePos = {ndcX, ndcY, entityPositionInNdcSpace.z, 1.0f};
|
||||
|
||||
// Get viewport coords in clip space
|
||||
math::float4 nearPlaneInClipSpace = Camera::inverseProjection(camera.getProjectionMatrix()) * ndcNearPlanePos;
|
||||
auto nearPlaneInCameraSpace = nearPlaneInClipSpace / nearPlaneInClipSpace.w;
|
||||
math::float4 farPlaneInClipSpace = Camera::inverseProjection(camera.getProjectionMatrix()) * ndcFarPlanePos;
|
||||
auto farPlaneInCameraSpace = farPlaneInClipSpace / farPlaneInClipSpace.w;
|
||||
math::float4 entityPlaneInClipSpace = Camera::inverseProjection(camera.getProjectionMatrix()) * ndcEntityPlanePos;
|
||||
auto entityPlaneInCameraSpace = entityPlaneInClipSpace / entityPlaneInClipSpace.w;
|
||||
auto entityPlaneInWorldSpace = camera.getModelMatrix() * entityPlaneInCameraSpace;
|
||||
|
||||
// Queue the position update (as a relative movement)
|
||||
queuePositionUpdate(entityId, entityPlaneInWorldSpace.x, entityPlaneInWorldSpace.y, entityPlaneInWorldSpace.z, false);
|
||||
}
|
||||
|
||||
// project the viewport movement (i.e pointer drag) vector onto the translation axis
|
||||
// this gives the proportion of the pointer drag vector to translate along the translation axis
|
||||
float projectedMovement = dot(viewportMovementNDC, normalize(ndcAxis));
|
||||
auto translationNDC = projectedMovement * normalize(ndcAxis);
|
||||
|
||||
float dotProduct = dot(normalize(worldAxis), cameraForward);
|
||||
|
||||
// Ensure minimum translation and correct direction
|
||||
const float minTranslation = 0.01f;
|
||||
if (isAligned || std::abs(projectedMovement) < minTranslation) {
|
||||
// Use the dominant component of the viewport movement
|
||||
float dominantMovement = std::abs(viewportMovementNDC.x) > std::abs(viewportMovementNDC.y) ? viewportMovementNDC.x : viewportMovementNDC.y;
|
||||
projectedMovement = (std::abs(dominantMovement) < minTranslation) ? minTranslation : std::abs(dominantMovement);
|
||||
projectedMovement *= (dominantMovement >= 0) ? 1.0f : -1.0f;
|
||||
translationNDC = projectedMovement * normalize(ndcAxis);
|
||||
}
|
||||
|
||||
// Log("projectedMovement %f dotProduct %f", projectedMovement, dotProduct);
|
||||
|
||||
// Get the camera's field of view and aspect ratio
|
||||
float fovY = camera.getFieldOfViewInDegrees(filament::Camera::Fov::VERTICAL);
|
||||
float fovX = camera.getFieldOfViewInDegrees(filament::Camera::Fov::HORIZONTAL);
|
||||
|
||||
// Convert to radians
|
||||
fovY = (fovY / 180) * M_PI;
|
||||
fovX = (fovX / 180) * M_PI;
|
||||
|
||||
float aspectRatio = static_cast<float>(vp.width) / vp.height;
|
||||
|
||||
auto &transformManager = _engine->getTransformManager();
|
||||
auto transformInstance = transformManager.getInstance(Entity::import(entity));
|
||||
const auto &transform = transformManager.getWorldTransform(transformInstance);
|
||||
|
||||
math::float3 translation;
|
||||
math::quatf rotation;
|
||||
math::float3 scale;
|
||||
|
||||
decomposeMatrix(transform, &translation, &rotation, &scale);
|
||||
|
||||
const auto entityWorldPosition = transform * math::float4{0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
float distanceToCamera = length(entityWorldPosition.xyz - camera.getPosition());
|
||||
|
||||
// Calculate the height of the view frustum at the given distance
|
||||
float frustumHeight = 2.0f * distanceToCamera * tan(fovY * 0.5f);
|
||||
|
||||
// Calculate the width of the view frustum at the given distance
|
||||
float frustumWidth = frustumHeight * aspectRatio;
|
||||
|
||||
// Convert projected viewport movement to world space distance
|
||||
float worldDistance = length(math::float2{(translationNDC / 2) * math::float2{frustumWidth, frustumHeight}});
|
||||
|
||||
// Determine the sign based on the alignment of world axis and camera forward
|
||||
float sign = (dotProduct >= 0) ? -1.0f : 1.0f;
|
||||
|
||||
// If aligned, use the sign of the projected movement instead
|
||||
if (isAligned) {
|
||||
sign = (projectedMovement >= 0) ? 1.0f : -1.0f;
|
||||
} else if (projectedMovement < 0) {
|
||||
sign *= -1.0f;
|
||||
}
|
||||
|
||||
// Flip the sign for the Z-axis
|
||||
if (std::abs(z) > 0.001)
|
||||
void SceneManager::queueRelativePositionUpdateWorldAxis(EntityId entity, float viewportCoordX, float viewportCoordY, float x, float y, float z)
|
||||
{
|
||||
sign *= -1.0f;
|
||||
auto worldAxis = math::float3{x, y, z};
|
||||
|
||||
// Get the camera
|
||||
const auto &camera = _view->getCamera();
|
||||
const auto &vp = _view->getViewport();
|
||||
auto viewMatrix = camera.getViewMatrix();
|
||||
|
||||
math::float3 cameraPosition = camera.getPosition();
|
||||
math::float3 cameraForward = -viewMatrix.upperLeft()[2];
|
||||
|
||||
// Scale the viewport movement to NDC coordinates view axis
|
||||
math::float2 viewportMovementNDC(viewportCoordX / (vp.width / 2), viewportCoordY / (vp.height / 2));
|
||||
|
||||
// calculate the translation axis in view space
|
||||
math::float3 viewSpaceAxis = viewMatrix.upperLeft() * worldAxis;
|
||||
|
||||
// Apply projection matrix to get clip space axis
|
||||
math::float4 clipAxis = camera.getProjectionMatrix() * math::float4(viewSpaceAxis, 0.0f);
|
||||
|
||||
// Perform perspective division to get the translation axis in normalized device coordinates (NDC)
|
||||
math::float2 ndcAxis = (clipAxis.xyz / clipAxis.w).xy;
|
||||
|
||||
const float epsilon = 1e-6f;
|
||||
bool isAligned = false;
|
||||
if (std::isnan(ndcAxis.x) || std::isnan(ndcAxis.y) || length(ndcAxis) < epsilon || std::abs(dot(normalize(worldAxis), cameraForward)) > 0.99f)
|
||||
{
|
||||
isAligned = true;
|
||||
// Find a suitable perpendicular axis:
|
||||
math::float3 perpendicularAxis;
|
||||
if (std::abs(worldAxis.x) < epsilon && std::abs(worldAxis.z) < epsilon)
|
||||
{
|
||||
// If worldAxis is (0, y, 0), use (1, 0, 0)
|
||||
perpendicularAxis = {1.0f, 0.0f, 0.0f};
|
||||
}
|
||||
else
|
||||
{
|
||||
// Otherwise, calculate a perpendicular vector
|
||||
perpendicularAxis = normalize(cross(cameraForward, worldAxis));
|
||||
}
|
||||
|
||||
ndcAxis = (camera.getProjectionMatrix() * math::float4(viewMatrix.upperLeft() * perpendicularAxis, 0.0f)).xy;
|
||||
|
||||
if (std::isnan(ndcAxis.x) || std::isnan(ndcAxis.y))
|
||||
{
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// project the viewport movement (i.e pointer drag) vector onto the translation axis
|
||||
// this gives the proportion of the pointer drag vector to translate along the translation axis
|
||||
float projectedMovement = dot(viewportMovementNDC, normalize(ndcAxis));
|
||||
auto translationNDC = projectedMovement * normalize(ndcAxis);
|
||||
|
||||
float dotProduct = dot(normalize(worldAxis), cameraForward);
|
||||
|
||||
// Ensure minimum translation and correct direction
|
||||
const float minTranslation = 0.01f;
|
||||
if (isAligned || std::abs(projectedMovement) < minTranslation)
|
||||
{
|
||||
// Use the dominant component of the viewport movement
|
||||
float dominantMovement = std::abs(viewportMovementNDC.x) > std::abs(viewportMovementNDC.y) ? viewportMovementNDC.x : viewportMovementNDC.y;
|
||||
projectedMovement = (std::abs(dominantMovement) < minTranslation) ? minTranslation : std::abs(dominantMovement);
|
||||
projectedMovement *= (dominantMovement >= 0) ? 1.0f : -1.0f;
|
||||
translationNDC = projectedMovement * normalize(ndcAxis);
|
||||
}
|
||||
|
||||
// Log("projectedMovement %f dotProduct %f", projectedMovement, dotProduct);
|
||||
|
||||
// Get the camera's field of view and aspect ratio
|
||||
float fovY = camera.getFieldOfViewInDegrees(filament::Camera::Fov::VERTICAL);
|
||||
float fovX = camera.getFieldOfViewInDegrees(filament::Camera::Fov::HORIZONTAL);
|
||||
|
||||
// Convert to radians
|
||||
fovY = (fovY / 180) * M_PI;
|
||||
fovX = (fovX / 180) * M_PI;
|
||||
|
||||
float aspectRatio = static_cast<float>(vp.width) / vp.height;
|
||||
|
||||
auto &transformManager = _engine->getTransformManager();
|
||||
auto transformInstance = transformManager.getInstance(Entity::import(entity));
|
||||
const auto &transform = transformManager.getWorldTransform(transformInstance);
|
||||
|
||||
math::float3 translation;
|
||||
math::quatf rotation;
|
||||
math::float3 scale;
|
||||
|
||||
decomposeMatrix(transform, &translation, &rotation, &scale);
|
||||
|
||||
const auto entityWorldPosition = transform * math::float4{0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
float distanceToCamera = length(entityWorldPosition.xyz - camera.getPosition());
|
||||
|
||||
// Calculate the height of the view frustum at the given distance
|
||||
float frustumHeight = 2.0f * distanceToCamera * tan(fovY * 0.5f);
|
||||
|
||||
// Calculate the width of the view frustum at the given distance
|
||||
float frustumWidth = frustumHeight * aspectRatio;
|
||||
|
||||
// Convert projected viewport movement to world space distance
|
||||
float worldDistance = length(math::float2{(translationNDC / 2) * math::float2{frustumWidth, frustumHeight}});
|
||||
|
||||
// Determine the sign based on the alignment of world axis and camera forward
|
||||
float sign = (dotProduct >= 0) ? -1.0f : 1.0f;
|
||||
|
||||
// If aligned, use the sign of the projected movement instead
|
||||
if (isAligned)
|
||||
{
|
||||
sign = (projectedMovement >= 0) ? 1.0f : -1.0f;
|
||||
}
|
||||
else if (projectedMovement < 0)
|
||||
{
|
||||
sign *= -1.0f;
|
||||
}
|
||||
|
||||
// Flip the sign for the Z-axis
|
||||
if (std::abs(z) > 0.001)
|
||||
{
|
||||
sign *= -1.0f;
|
||||
}
|
||||
|
||||
worldDistance *= sign;
|
||||
|
||||
auto newWorldTranslation = worldAxis * worldDistance;
|
||||
|
||||
queuePositionUpdate(entity, newWorldTranslation.x, newWorldTranslation.y, newWorldTranslation.z, true);
|
||||
}
|
||||
|
||||
worldDistance *= sign;
|
||||
|
||||
auto newWorldTranslation = worldAxis * worldDistance;
|
||||
|
||||
queuePositionUpdate(entity, newWorldTranslation.x, newWorldTranslation.y, newWorldTranslation.z, true);
|
||||
}
|
||||
|
||||
void SceneManager::queuePositionUpdate(EntityId entity, float x, float y, float z, bool relative)
|
||||
{
|
||||
std::lock_guard lock(_mutex);
|
||||
@@ -2343,10 +2387,12 @@ void SceneManager::queueRelativePositionUpdateWorldAxis(EntityId entity, float v
|
||||
_view->setLayerEnabled(layer, enabled);
|
||||
}
|
||||
|
||||
void SceneManager::removeStencilHighlight(EntityId entityId) {
|
||||
void SceneManager::removeStencilHighlight(EntityId entityId)
|
||||
{
|
||||
std::lock_guard lock(_stencilMutex);
|
||||
auto found = _highlighted.find(entityId);
|
||||
if(found == _highlighted.end()) {
|
||||
if (found == _highlighted.end())
|
||||
{
|
||||
Log("Entity %d has no stencil highlight, skipping removal", entityId);
|
||||
return;
|
||||
}
|
||||
@@ -2355,147 +2401,164 @@ void SceneManager::queueRelativePositionUpdateWorldAxis(EntityId entity, float v
|
||||
_highlighted.erase(entityId);
|
||||
}
|
||||
|
||||
void SceneManager::setStencilHighlight(EntityId entityId, float r, float g, float b) {
|
||||
|
||||
void SceneManager::setStencilHighlight(EntityId entityId, float r, float g, float b)
|
||||
{
|
||||
|
||||
std::lock_guard lock(_stencilMutex);
|
||||
|
||||
auto highlightEntity = std::make_unique<HighlightOverlay>(entityId, this, _engine, r, g, b);
|
||||
|
||||
if(highlightEntity->isValid()) {
|
||||
if (highlightEntity->isValid())
|
||||
{
|
||||
_highlighted.emplace(entityId, std::move(highlightEntity));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
///
|
||||
/// Creates an entity with the specified geometry/material/normals and adds to the scene.
|
||||
/// If [keepData] is true, stores
|
||||
///
|
||||
EntityId SceneManager::createGeometryWithNormals(
|
||||
float *vertices,
|
||||
uint32_t numVertices,
|
||||
float *normals,
|
||||
uint32_t numNormals,
|
||||
uint16_t *indices,
|
||||
uint32_t numIndices,
|
||||
filament::RenderableManager::PrimitiveType primitiveType,
|
||||
const char *materialPath,
|
||||
bool keepData
|
||||
) {
|
||||
auto geometry = std::make_unique<CustomGeometry>(vertices, numVertices, normals, numNormals, indices, numIndices, primitiveType, _engine);
|
||||
EntityId SceneManager::createGeometry(
|
||||
float *vertices,
|
||||
uint32_t numVertices,
|
||||
float *normals,
|
||||
uint32_t numNormals,
|
||||
float *uvs,
|
||||
uint32_t numUvs,
|
||||
uint16_t *indices,
|
||||
uint32_t numIndices,
|
||||
filament::RenderableManager::PrimitiveType primitiveType,
|
||||
const char *materialPath,
|
||||
bool keepData)
|
||||
{
|
||||
auto geometry = std::make_unique<CustomGeometry>(vertices, numVertices, normals, numNormals, uvs, numUvs, indices, numIndices, primitiveType, _engine);
|
||||
|
||||
auto renderable = utils::EntityManager::get().create();
|
||||
RenderableManager::Builder builder(1);
|
||||
auto entity = utils::EntityManager::get().create();
|
||||
RenderableManager::Builder builder(1);
|
||||
|
||||
builder.boundingBox(geometry->getBoundingBox())
|
||||
.geometry(0, primitiveType, geometry->vertexBuffer(), geometry->indexBuffer(), 0, numIndices)
|
||||
.culling(true)
|
||||
.receiveShadows(true)
|
||||
.castShadows(true);
|
||||
builder.boundingBox(geometry->getBoundingBox())
|
||||
.geometry(0, primitiveType, geometry->vertexBuffer(), geometry->indexBuffer(), 0, numIndices)
|
||||
.culling(true)
|
||||
.receiveShadows(true)
|
||||
.castShadows(true);
|
||||
|
||||
if (materialPath) {
|
||||
filament::Material* mat = nullptr;
|
||||
|
||||
auto matData = _resourceLoaderWrapper->load(materialPath);
|
||||
mat = Material::Builder().package(matData.data, matData.size).build(*_engine);
|
||||
_resourceLoaderWrapper->free(matData);
|
||||
builder.material(0, mat->getDefaultInstance());
|
||||
} else {
|
||||
filament::gltfio::MaterialKey config;
|
||||
|
||||
config.unlit = false;
|
||||
config.doubleSided = false;
|
||||
config.useSpecularGlossiness = false;
|
||||
config.alphaMode = filament::gltfio::AlphaMode::OPAQUE;
|
||||
config.hasBaseColorTexture = false;
|
||||
config.hasClearCoat = false;
|
||||
config.hasClearCoatNormalTexture = false;
|
||||
config.hasClearCoatRoughnessTexture = false;
|
||||
config.hasEmissiveTexture = false;
|
||||
config.hasIOR = false;
|
||||
config.hasMetallicRoughnessTexture = false;
|
||||
config.hasNormalTexture = false;
|
||||
config.hasOcclusionTexture = false;
|
||||
config.hasSheen = false;
|
||||
config.hasSheenColorTexture = false;
|
||||
config.hasSheenRoughnessTexture = false;
|
||||
config.hasSpecularGlossinessTexture = false;
|
||||
config.hasTextureTransforms = false;
|
||||
config.hasTransmission = false;
|
||||
config.hasTransmissionTexture = false;
|
||||
config.hasVolume = false;
|
||||
config.hasVolumeThicknessTexture = false;
|
||||
filament::Material *mat = nullptr;
|
||||
filament::MaterialInstance* materialInstance = nullptr;
|
||||
|
||||
config.hasVertexColors = false;
|
||||
config.hasVolume = false;
|
||||
// config.enableDiagnostics = true;
|
||||
|
||||
filament::gltfio::UvMap uvmap;
|
||||
auto materialInstance = _ubershaderProvider->createMaterialInstance(&config, &uvmap);
|
||||
materialInstance->setParameter("baseColorFactor", RgbaType::sRGB, filament::math::float4 { 1.0f, 0.0f, 0.0f, 1.0f });
|
||||
// auto materialInstance = _unlitMaterialProvider->createMaterialInstance(&config, &uvmap);
|
||||
builder.material(0, materialInstance);
|
||||
if (materialPath)
|
||||
{
|
||||
auto matData = _resourceLoaderWrapper->load(materialPath);
|
||||
mat = Material::Builder().package(matData.data, matData.size).build(*_engine);
|
||||
_resourceLoaderWrapper->free(matData);
|
||||
materialInstance = mat->getDefaultInstance();
|
||||
}
|
||||
else
|
||||
{
|
||||
filament::gltfio::MaterialKey config;
|
||||
|
||||
}
|
||||
config.unlit = false;
|
||||
config.doubleSided = false;
|
||||
config.useSpecularGlossiness = false;
|
||||
config.alphaMode = filament::gltfio::AlphaMode::OPAQUE;
|
||||
config.hasBaseColorTexture = uvs != nullptr;
|
||||
config.hasClearCoat = false;
|
||||
config.hasClearCoatNormalTexture = false;
|
||||
config.hasClearCoatRoughnessTexture = false;
|
||||
config.hasEmissiveTexture = false;
|
||||
config.hasIOR = false;
|
||||
config.hasMetallicRoughnessTexture = false;
|
||||
config.hasNormalTexture = false;
|
||||
config.hasOcclusionTexture = false;
|
||||
config.hasSheen = false;
|
||||
config.hasSheenColorTexture = false;
|
||||
config.hasSheenRoughnessTexture = false;
|
||||
config.hasSpecularGlossinessTexture = false;
|
||||
config.hasTextureTransforms = false;
|
||||
config.hasTransmission = false;
|
||||
config.hasTransmissionTexture = false;
|
||||
config.hasVolume = false;
|
||||
config.hasVolumeThicknessTexture = false;
|
||||
config.baseColorUV = 0;
|
||||
config.hasVertexColors = false;
|
||||
config.hasVolume = false;
|
||||
|
||||
builder.build(*_engine, renderable);
|
||||
filament::gltfio::UvMap uvmap;
|
||||
materialInstance = _ubershaderProvider->createMaterialInstance(&config, &uvmap);
|
||||
|
||||
_scene->addEntity(renderable);
|
||||
|
||||
auto entityId = Entity::smuggle(renderable);
|
||||
|
||||
_geometry.emplace(entityId, std::move(geometry));
|
||||
|
||||
return entityId;
|
||||
materialInstance->setParameter("baseColorFactor", RgbaType::sRGB, filament::math::float4{1.0f, 0.0f, 1.0f, 1.0f});
|
||||
}
|
||||
|
||||
EntityId SceneManager::createGeometry(
|
||||
float *vertices,
|
||||
uint32_t numVertices,
|
||||
uint16_t *indices,
|
||||
uint32_t numIndices,
|
||||
RenderableManager::PrimitiveType primitiveType,
|
||||
const char *materialPath,
|
||||
bool keepData
|
||||
) {
|
||||
return createGeometryWithNormals(vertices, numVertices, nullptr, 0, indices, numIndices, primitiveType, materialPath, keepData);
|
||||
}
|
||||
// Set up texture and sampler if UVs are available
|
||||
if (uvs != nullptr && numUvs > 0)
|
||||
{
|
||||
// Create a default white texture
|
||||
static constexpr uint32_t textureSize = 1;
|
||||
static constexpr uint32_t white = 0x00ffffff;
|
||||
Texture* texture = Texture::Builder()
|
||||
.width(textureSize)
|
||||
.height(textureSize)
|
||||
.levels(1)
|
||||
.format(Texture::InternalFormat::RGBA8)
|
||||
.build(*_engine);
|
||||
|
||||
void SceneManager::setMaterialProperty(EntityId entityId, int materialIndex, const char* property, float value) {
|
||||
auto entity = Entity::import(entityId);
|
||||
const auto& rm = _engine->getRenderableManager();
|
||||
auto renderableInstance = rm.getInstance(entity);
|
||||
if(!renderableInstance.isValid()) {
|
||||
Log("ERROR");
|
||||
return;
|
||||
}
|
||||
auto materialInstance = rm.getMaterialInstanceAt(renderableInstance, materialIndex);
|
||||
|
||||
if(!materialInstance->getMaterial()->hasParameter(property)) {
|
||||
Log("Parameter %s not found", property);
|
||||
return;
|
||||
}
|
||||
materialInstance->setParameter(property, value);
|
||||
}
|
||||
_textures.insert(texture);
|
||||
|
||||
filament::backend::PixelBufferDescriptor pbd(&white, 4, Texture::Format::RGBA, Texture::Type::UBYTE);
|
||||
texture->setImage(*_engine, 0, std::move(pbd));
|
||||
|
||||
void SceneManager::setMaterialProperty(EntityId entityId, int materialIndex, const char* property, filament::math::float4 value) {
|
||||
auto entity = Entity::import(entityId);
|
||||
const auto& rm = _engine->getRenderableManager();
|
||||
auto renderableInstance = rm.getInstance(entity);
|
||||
if(!renderableInstance.isValid()) {
|
||||
Log("ERROR");
|
||||
return;
|
||||
// Create a sampler
|
||||
TextureSampler sampler(TextureSampler::MinFilter::LINEAR, TextureSampler::MagFilter::LINEAR);
|
||||
|
||||
// Set the texture and sampler to the material instance
|
||||
materialInstance->setParameter("baseColorMap", texture, sampler);
|
||||
}
|
||||
auto materialInstance = rm.getMaterialInstanceAt(renderableInstance, materialIndex);
|
||||
|
||||
if(!materialInstance->getMaterial()->hasParameter(property)) {
|
||||
Log("Parameter %s not found", property);
|
||||
return;
|
||||
|
||||
builder.material(0, materialInstance);
|
||||
builder.build(*_engine, entity);
|
||||
|
||||
_scene->addEntity(entity);
|
||||
|
||||
auto entityId = Entity::smuggle(entity);
|
||||
|
||||
_geometry.emplace(entityId, std::move(geometry));
|
||||
|
||||
return entityId;
|
||||
}
|
||||
|
||||
void SceneManager::setMaterialProperty(EntityId entityId, int materialIndex, const char *property, float value)
|
||||
{
|
||||
auto entity = Entity::import(entityId);
|
||||
const auto &rm = _engine->getRenderableManager();
|
||||
auto renderableInstance = rm.getInstance(entity);
|
||||
if (!renderableInstance.isValid())
|
||||
{
|
||||
Log("ERROR");
|
||||
return;
|
||||
}
|
||||
auto materialInstance = rm.getMaterialInstanceAt(renderableInstance, materialIndex);
|
||||
|
||||
if (!materialInstance->getMaterial()->hasParameter(property))
|
||||
{
|
||||
Log("Parameter %s not found", property);
|
||||
return;
|
||||
}
|
||||
materialInstance->setParameter(property, value);
|
||||
}
|
||||
|
||||
void SceneManager::setMaterialProperty(EntityId entityId, int materialIndex, const char *property, filament::math::float4 value)
|
||||
{
|
||||
auto entity = Entity::import(entityId);
|
||||
const auto &rm = _engine->getRenderableManager();
|
||||
auto renderableInstance = rm.getInstance(entity);
|
||||
if (!renderableInstance.isValid())
|
||||
{
|
||||
Log("ERROR");
|
||||
return;
|
||||
}
|
||||
auto materialInstance = rm.getMaterialInstanceAt(renderableInstance, materialIndex);
|
||||
|
||||
if (!materialInstance->getMaterial()->hasParameter(property))
|
||||
{
|
||||
Log("Parameter %s not found", property);
|
||||
return;
|
||||
}
|
||||
materialInstance->setParameter(property, value);
|
||||
}
|
||||
materialInstance->setParameter(property, value);
|
||||
}
|
||||
|
||||
} // namespace thermion_filament
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user