refactoring

This commit is contained in:
Nick Fisher
2025-03-19 12:27:13 +08:00
parent d5bffd5ad2
commit 627447f8b0
65 changed files with 2304 additions and 3005 deletions

View File

@@ -0,0 +1,262 @@
import 'dart:typed_data';
import 'package:animation_tools_dart/src/bone_animation_data.dart';
import 'package:animation_tools_dart/src/morph_animation_data.dart';
import 'package:thermion_dart/src/filament/src/layers.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/callbacks.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_asset.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_filament_app.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_material.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_scene.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_texture.dart';
import 'package:thermion_dart/thermion_dart.dart';
class BackgroundImage extends ThermionAsset {
final ThermionAsset asset;
ThermionEntity get entity => asset.entity;
Texture? _backgroundImageTexture;
FFIMaterial? _imageMaterial;
FFITextureSampler? _imageSampler;
final FFIScene scene;
final FilamentApp app;
BackgroundImage._(this.asset, this.scene, this.app,
this._backgroundImageTexture, this._imageMaterial, this._imageSampler);
Future destroy() async {
Scene_removeEntity(scene.scene, entity);
await _backgroundImageTexture!.dispose();
await _imageSampler!.dispose();
}
static Future<BackgroundImage> create(
FFIFilamentApp app, FFIScene scene, Uint8List imageData) async {
final image = await app.decodeImage(imageData);
var backgroundImageTexture = await app.createTexture(
await image.getWidth(), await image.getHeight());
var imageMaterial = FFIMaterial(Material_createImageMaterial(), app);
var imageSampler = await app.createTextureSampler() as FFITextureSampler;
var imageMaterialInstance =
await imageMaterial!.createInstance() as FFIMaterialInstance;
await imageMaterialInstance.setParameterTexture(
"image",
backgroundImageTexture as FFITexture,
imageSampler as FFITextureSampler);
var backgroundImage =
await app.createGeometry(GeometryHelper.fullscreenQuad()) as FFIAsset;
backgroundImage.setMaterialInstanceAt(imageMaterialInstance);
await scene.add(backgroundImage);
return BackgroundImage._(backgroundImage, scene, app,
backgroundImageTexture, imageMaterial, imageSampler);
}
@override
Future<ThermionAsset> createInstance(
{covariant List<MaterialInstance>? materialInstances = null}) {
throw UnimplementedError();
}
@override
Future<List<ThermionEntity>> getChildEntities() async {
return [];
}
@override
Future<ThermionAsset> getInstance(int index) {
throw UnimplementedError();
}
@override
Future<int> getInstanceCount() async {
return 0;
}
@override
Future<List<ThermionAsset>> getInstances() async {
return [];
}
@override
Future removeStencilHighlight() {
// TODO: implement removeStencilHighlight
throw UnimplementedError();
}
@override
Future setBoundingBoxVisibility(bool visible) {
// TODO: implement setBoundingBoxVisibility
throw UnimplementedError();
}
@override
Future setCastShadows(bool castShadows) {
// TODO: implement setCastShadows
throw UnimplementedError();
}
@override
Future setMaterialInstanceAt(covariant MaterialInstance instance) {
// TODO: implement setMaterialInstanceAt
throw UnimplementedError();
}
@override
Future setReceiveShadows(bool castShadows) {
// TODO: implement setReceiveShadows
throw UnimplementedError();
}
@override
Future setStencilHighlight(
{double r = 1.0, double g = 0.0, double b = 0.0, int? entityIndex}) {
// TODO: implement setStencilHighlight
throw UnimplementedError();
}
@override
Future setVisibilityLayer(ThermionEntity entity, VisibilityLayers layer) {
// TODO: implement setVisibilityLayer
throw UnimplementedError();
}
@override
Future addAnimationComponent(ThermionEntity entity) {
// TODO: implement addAnimationComponent
throw UnimplementedError();
}
@override
Future addBoneAnimation(ThermionAsset asset, BoneAnimationData animation, {int skinIndex = 0, double fadeInInSecs = 0.0, double fadeOutInSecs = 0.0, double maxDelta = 1.0}) {
// TODO: implement addBoneAnimation
throw UnimplementedError();
}
@override
Future clearMorphAnimationData(ThermionEntity entity) {
// TODO: implement clearMorphAnimationData
throw UnimplementedError();
}
@override
Future<double> getAnimationDuration(covariant ThermionAsset asset, int animationIndex) {
// TODO: implement getAnimationDuration
throw UnimplementedError();
}
@override
Future<List<String>> getAnimationNames(covariant ThermionAsset asset) {
// TODO: implement getAnimationNames
throw UnimplementedError();
}
@override
Future<ThermionEntity> getBone(covariant ThermionAsset asset, int boneIndex, {int skinIndex = 0}) {
// TODO: implement getBone
throw UnimplementedError();
}
@override
Future<List<String>> getBoneNames(covariant ThermionAsset asset, {int skinIndex = 0}) {
// TODO: implement getBoneNames
throw UnimplementedError();
}
@override
Future<Matrix4> getInverseBindMatrix(covariant ThermionAsset asset, int boneIndex, {int skinIndex = 0}) {
// TODO: implement getInverseBindMatrix
throw UnimplementedError();
}
@override
Future<Matrix4> getLocalTransform(ThermionEntity entity) {
// TODO: implement getLocalTransform
throw UnimplementedError();
}
@override
Future<List<String>> getMorphTargetNames(covariant ThermionAsset asset, ThermionEntity childEntity) {
// TODO: implement getMorphTargetNames
throw UnimplementedError();
}
@override
Future<Matrix4> getWorldTransform(ThermionEntity entity) {
// TODO: implement getWorldTransform
throw UnimplementedError();
}
@override
Future playAnimation(ThermionAsset asset, int index, {bool loop = false, bool reverse = false, bool replaceActive = true, double crossfade = 0.0, double startOffset = 0.0}) {
// TODO: implement playAnimation
throw UnimplementedError();
}
@override
Future playAnimationByName(covariant ThermionAsset asset, String name, {bool loop = false, bool reverse = false, bool replaceActive = true, double crossfade = 0.0}) {
// TODO: implement playAnimationByName
throw UnimplementedError();
}
@override
Future removeAnimationComponent(ThermionEntity entity) {
// TODO: implement removeAnimationComponent
throw UnimplementedError();
}
@override
Future resetBones(ThermionAsset asset) {
// TODO: implement resetBones
throw UnimplementedError();
}
@override
Future setBoneTransform(ThermionEntity entity, int boneIndex, Matrix4 transform, {int skinIndex = 0}) {
// TODO: implement setBoneTransform
throw UnimplementedError();
}
@override
Future setGltfAnimationFrame(covariant ThermionAsset asset, int index, int animationFrame) {
// TODO: implement setGltfAnimationFrame
throw UnimplementedError();
}
@override
Future setMorphAnimationData(covariant ThermionAsset asset, MorphAnimationData animation, {List<String>? targetMeshNames}) {
// TODO: implement setMorphAnimationData
throw UnimplementedError();
}
@override
Future setMorphTargetWeights(ThermionEntity entity, List<double> weights) {
// TODO: implement setMorphTargetWeights
throw UnimplementedError();
}
@override
Future setTransform(ThermionEntity entity, Matrix4 transform) {
// TODO: implement setTransform
throw UnimplementedError();
}
@override
Future stopAnimation(covariant ThermionAsset asset, int animationIndex) {
// TODO: implement stopAnimation
throw UnimplementedError();
}
@override
Future stopAnimationByName(covariant ThermionAsset asset, String name) {
// TODO: implement stopAnimationByName
throw UnimplementedError();
}
@override
Future updateBoneMatrices(ThermionEntity entity) {
// TODO: implement updateBoneMatrices
throw UnimplementedError();
}
}

View File

@@ -1,13 +1,17 @@
import 'dart:typed_data';
import 'package:thermion_dart/src/filament/src/layers.dart';
import 'package:thermion_dart/src/utils/src/matrix.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/callbacks.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_filament_app.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_material.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/thermion_viewer_ffi.dart';
import 'package:thermion_dart/thermion_dart.dart';
import 'package:vector_math/vector_math_64.dart' as v64;
import 'package:vector_math/vector_math_64.dart';
class FFIAsset extends ThermionAsset {
///
///
///
@@ -389,7 +393,477 @@ class FFIAsset extends ThermionAsset {
return RenderableManager_isShadowReceiver(app.renderableManager, entity);
}
///
///
///
Future transformToUnitCube() async {
SceneAsset_transformToUnitCube(asset);
TransformManager_transformToUnitCube(app.transformManager, entity, SceneAsset_getBoundingBox(asset));
}
///
///
///
Future setVisibilityLayer(
ThermionEntity entity, VisibilityLayers layer) async {
RenderableManager_setVisibilityLayer(
app.renderableManager, entity, layer.value);
}
///
///
///
@override
Future setMorphTargetWeights(
ThermionEntity entity, List<double> weights) async {
if (weights.isEmpty) {
throw Exception("Weights must not be empty");
}
var weightsPtr = allocator<Float>(weights.length);
for (int i = 0; i < weights.length; i++) {
weightsPtr[i] = weights[i];
}
var success = await withBoolCallback((cb) {
AnimationManager_setMorphTargetWeightsRenderThread(
animationManager, entity, weightsPtr, weights.length, cb);
});
allocator.free(weightsPtr);
if (!success) {
throw Exception(
"Failed to set morph target weights, check logs for details");
}
}
///
///
///
@override
Future<List<String>> getMorphTargetNames(
covariant FFIAsset asset, ThermionEntity childEntity) async {
var names = <String>[];
var count = AnimationManager_getMorphTargetNameCount(
animationManager, asset.asset, childEntity);
var outPtr = allocator<Char>(255);
for (int i = 0; i < count; i++) {
AnimationManager_getMorphTargetName(
animationManager, asset.asset, childEntity, outPtr, i);
names.add(outPtr.cast<Utf8>().toDartString());
}
allocator.free(outPtr);
return names.cast<String>();
}
Future<List<String>> getBoneNames(covariant FFIAsset asset,
{int skinIndex = 0}) async {
var count =
AnimationManager_getBoneCount(animationManager, asset.asset, skinIndex);
var out = allocator<Pointer<Char>>(count);
for (int i = 0; i < count; i++) {
out[i] = allocator<Char>(255);
}
AnimationManager_getBoneNames(
animationManager, asset.asset, out, skinIndex);
var names = <String>[];
for (int i = 0; i < count; i++) {
var namePtr = out[i];
names.add(namePtr.cast<Utf8>().toDartString());
}
return names;
}
///
///
///
@override
Future<List<String>> getAnimationNames(covariant FFIAsset asset) async {
var animationCount =
AnimationManager_getAnimationCount(animationManager, asset.asset);
var names = <String>[];
var outPtr = allocator<Char>(255);
for (int i = 0; i < animationCount; i++) {
AnimationManager_getAnimationName(
animationManager, asset.asset, outPtr, i);
names.add(outPtr.cast<Utf8>().toDartString());
}
allocator.free(outPtr);
return names;
}
///
///
///
@override
Future<double> getAnimationDuration(
FFIAsset asset, int animationIndex) async {
return AnimationManager_getAnimationDuration(
animationManager, asset.asset, animationIndex);
}
///
///
///
Future<double> getAnimationDurationByName(FFIAsset asset, String name) async {
var animations = await getAnimationNames(asset);
var index = animations.indexOf(name);
if (index == -1) {
throw Exception("Failed to find animation $name");
}
return getAnimationDuration(asset, index);
}
Future clearMorphAnimationData(ThermionEntity entity) async {
if (!AnimationManager_clearMorphAnimation(animationManager, entity)) {
throw Exception("Failed to clear morph animation");
}
}
///
///
///
@override
Future setMorphAnimationData(FFIAsset asset, MorphAnimationData animation,
{List<String>? targetMeshNames}) async {
var meshEntities = await getChildEntities(asset);
var meshNames = meshEntities.map((e) => getNameForEntity(e)).toList();
if (targetMeshNames != null) {
for (final targetMeshName in targetMeshNames) {
if (!meshNames.contains(targetMeshName)) {
throw Exception(
"Error: mesh ${targetMeshName} does not exist under the specified entity. Available meshes : ${meshNames}");
}
}
}
// Entities are not guaranteed to have the same morph targets (or share the same order),
// either from each other, or from those specified in [animation].
// We therefore set morph targets separately for each mesh.
// For each mesh, allocate enough memory to hold FxM 32-bit floats
// (where F is the number of Frames, and M is the number of morph targets in the mesh).
// we call [extract] on [animation] to return frame data only for morph targets that present in both the mesh and the animation
for (int i = 0; i < meshNames.length; i++) {
var meshName = meshNames[i];
var meshEntity = meshEntities[i];
if (targetMeshNames?.contains(meshName) == false) {
// _logger.info("Skipping $meshName, not contained in target");
continue;
}
var meshMorphTargets = await getMorphTargetNames(asset, meshEntity);
var intersection = animation.morphTargets
.toSet()
.intersection(meshMorphTargets.toSet())
.toList();
if (intersection.isEmpty) {
throw Exception(
"""No morph targets specified in animation are present on mesh $meshName.
If you weren't intending to animate every mesh, specify [targetMeshNames] when invoking this method.
Animation morph targets: ${animation.morphTargets}\n
Mesh morph targets ${meshMorphTargets}
Child meshes: ${meshNames}""");
}
var indices = Uint32List.fromList(
intersection.map((m) => meshMorphTargets.indexOf(m)).toList());
// var frameData = animation.data;
var frameData = animation.subset(intersection);
assert(
frameData.data.length == animation.numFrames * intersection.length);
var result = AnimationManager_setMorphAnimation(
animationManager,
meshEntity,
frameData.data.address,
indices.address,
indices.length,
animation.numFrames,
animation.frameLengthInMs);
if (!result) {
throw Exception("Failed to set morph animation data for ${meshName}");
}
}
}
///
/// Currently, scale is not supported.
///
@override
Future addBoneAnimation(covariant FFIAsset asset, BoneAnimationData animation,
{int skinIndex = 0,
double fadeOutInSecs = 0.0,
double fadeInInSecs = 0.0,
double maxDelta = 1.0}) async {
if (animation.space != Space.Bone &&
animation.space != Space.ParentWorldRotation) {
throw UnimplementedError("TODO - support ${animation.space}");
}
if (skinIndex != 0) {
throw UnimplementedError("TODO - support skinIndex != 0 ");
}
var boneNames = await getBoneNames(asset);
var restLocalTransformsRaw = allocator<Float>(boneNames.length * 16);
AnimationManager_getRestLocalTransforms(animationManager, asset.asset,
skinIndex, restLocalTransformsRaw, boneNames.length);
var restLocalTransforms = <Matrix4>[];
for (int i = 0; i < boneNames.length; i++) {
var values = <double>[];
for (int j = 0; j < 16; j++) {
values.add(restLocalTransformsRaw[(i * 16) + j]);
}
restLocalTransforms.add(Matrix4.fromList(values));
}
allocator.free(restLocalTransformsRaw);
var numFrames = animation.frameData.length;
var data = allocator<Float>(numFrames * 16);
var bones = await Future.wait(List<Future<ThermionEntity>>.generate(
boneNames.length, (i) => getBone(asset, i)));
for (int i = 0; i < animation.bones.length; i++) {
var boneName = animation.bones[i];
var entityBoneIndex = boneNames.indexOf(boneName);
if (entityBoneIndex == -1) {
_logger.warning("Bone $boneName not found, skipping");
continue;
}
var boneEntity = bones[entityBoneIndex];
var baseTransform = restLocalTransforms[entityBoneIndex];
var world = Matrix4.identity();
// this odd use of ! is intentional, without it, the WASM optimizer gets in trouble
var parentBoneEntity = (await getParent(boneEntity))!;
while (true) {
if (!bones.contains(parentBoneEntity!)) {
break;
}
world = restLocalTransforms[bones.indexOf(parentBoneEntity!)] * world;
parentBoneEntity = (await getParent(parentBoneEntity))!;
}
world = Matrix4.identity()..setRotation(world.getRotation());
var worldInverse = Matrix4.identity()..copyInverse(world);
for (int frameNum = 0; frameNum < numFrames; frameNum++) {
var rotation = animation.frameData[frameNum][i].rotation;
var translation = animation.frameData[frameNum][i].translation;
var frameTransform =
Matrix4.compose(translation, rotation, Vector3.all(1.0));
var newLocalTransform = frameTransform.clone();
if (animation.space == Space.Bone) {
newLocalTransform = baseTransform * frameTransform;
} else if (animation.space == Space.ParentWorldRotation) {
newLocalTransform =
baseTransform * (worldInverse * frameTransform * world);
}
for (int j = 0; j < 16; j++) {
data.elementAt((frameNum * 16) + j).value =
newLocalTransform.storage[j];
}
}
AnimationManager_addBoneAnimation(
animationManager,
asset.asset,
skinIndex,
entityBoneIndex,
data,
numFrames,
animation.frameLengthInMs,
fadeOutInSecs,
fadeInInSecs,
maxDelta);
}
allocator.free(data);
}
///
///
///
Future<Matrix4> getLocalTransform(ThermionEntity entity) async {
return double4x4ToMatrix4(
TransformManager_getLocalTransform(app.transformManager, entity));
}
///
///
///
Future<Matrix4> getWorldTransform(ThermionEntity entity) async {
return double4x4ToMatrix4(
TransformManager_getWorldTransform(app.transformManager, entity));
}
///
///
///
Future setTransform(ThermionEntity entity, Matrix4 transform) async {
TransformManager_setTransform(
app.transformManager, entity, matrix4ToDouble4x4(transform));
}
///
///
///
Future updateBoneMatrices(ThermionEntity entity) async {
throw UnimplementedError();
// var result = await withBoolCallback((cb) {
// update_bone_matrices_render_thread(_sceneManager!, entity, cb);
// });
// if (!result) {
// throw Exception("Failed to update bone matrices");
// }
}
///
///
///
Future<Matrix4> getInverseBindMatrix(FFIAsset asset, int boneIndex,
{int skinIndex = 0}) async {
var matrix = Float32List(16);
AnimationManager_getInverseBindMatrix(
animationManager, asset.asset, skinIndex, boneIndex, matrix.address);
return Matrix4.fromList(matrix);
}
///
///
///
Future<ThermionEntity> getBone(FFIAsset asset, int boneIndex,
{int skinIndex = 0}) async {
if (skinIndex != 0) {
throw UnimplementedError("TOOD");
}
return AnimationManager_getBone(
animationManager, asset.asset, skinIndex, boneIndex);
}
///
///
///
@override
Future setBoneTransform(
ThermionEntity entity, int boneIndex, Matrix4 transform,
{int skinIndex = 0}) async {
if (skinIndex != 0) {
throw UnimplementedError("TOOD");
}
final ptr = allocator<Float>(16);
for (int i = 0; i < 16; i++) {
ptr[i] = transform.storage[i];
}
var result = await withBoolCallback((cb) {
AnimationManager_setBoneTransformRenderThread(
animationManager, entity, skinIndex, boneIndex, ptr, cb);
});
allocator.free(ptr);
if (!result) {
throw Exception("Failed to set bone transform");
}
}
///
///
///
///
@override
Future resetBones(covariant FFIAsset asset) async {
AnimationManager_resetToRestPose(animationManager, asset.asset);
}
///
///
///
@override
Future playAnimation(covariant FFIAsset asset, int index,
{bool loop = false,
bool reverse = false,
bool replaceActive = true,
double crossfade = 0.0,
double startOffset = 0.0}) async {
AnimationManager_playAnimation(animationManager, asset.asset, index, loop,
reverse, replaceActive, crossfade, startOffset);
}
///
///
///
@override
Future stopAnimation(FFIAsset asset, int animationIndex) async {
AnimationManager_stopAnimation(
animationManager, asset.asset, animationIndex);
}
///
///
///
@override
Future stopAnimationByName(FFIAsset asset, String name) async {
var animations = await getAnimationNames(asset);
await stopAnimation(asset, animations.indexOf(name));
}
///
///
///
@override
Future playAnimationByName(FFIAsset asset, String name,
{bool loop = false,
bool reverse = false,
bool replaceActive = true,
double crossfade = 0.0,
bool wait = false}) async {
var animations = await getAnimationNames(asset);
var index = animations.indexOf(name);
var duration = await getAnimationDuration(asset, index);
await playAnimation(asset, index,
loop: loop,
reverse: reverse,
replaceActive: replaceActive,
crossfade: crossfade);
if (wait) {
await Future.delayed(Duration(milliseconds: (duration * 1000).toInt()));
}
}
///
///
///
@override
Future setGltfAnimationFrame(
FFIAsset asset, int index, int animationFrame) async {
AnimationManager_setGltfAnimationFrame(
animationManager, asset.asset, index, animationFrame);
}
///
///
///
@override
Future addAnimationComponent(ThermionEntity entity) async {
AnimationManager_addAnimationComponent(animationManager, entity);
}
///
///
///
Future removeAnimationComponent(ThermionEntity entity) async {
AnimationManager_removeAnimationComponent(animationManager, entity);
}
}

View File

@@ -3,10 +3,10 @@ import 'dart:typed_data';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_filament_app.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/thermion_dart.g.dart';
import 'package:thermion_dart/src/viewer/src/shared_types/layers.dart';
import 'package:thermion_dart/src/filament/src/layers.dart';
import 'package:thermion_dart/thermion_dart.dart';
import 'package:vector_math/vector_math_64.dart';
import '../../../../utils/src/matrix.dart';
import '../../thermion_viewer_base.dart';
class FFICamera extends Camera {
final Pointer<TCamera> camera;
@@ -150,4 +150,12 @@ class FFICamera extends Camera {
Future destroy() async {
throw UnimplementedError();
}
Future setCameraExposure(
double aperture, double shutterSpeed, double sensitivity) async {
Camera_setExposure(camera, aperture, shutterSpeed, sensitivity);
}
Future<double> getFocusDistance() async => Camera_getFocusDistance(camera);
Future setFocusDistance(double focusDistance) async => Camera_setFocusDistance(camera, focusDistance);
}

View File

@@ -1,8 +1,13 @@
import 'dart:async';
import 'dart:typed_data';
import 'package:thermion_dart/src/viewer/src/ffi/src/callbacks.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_asset.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_material.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_render_target.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_swapchain.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_texture.dart';
import 'package:thermion_dart/src/viewer/src/filament/filament.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_view.dart';
import 'package:thermion_dart/thermion_dart.dart';
typedef RenderCallback = Pointer<NativeFunction<Void Function(Pointer<Void>)>>;
@@ -11,12 +16,13 @@ class FFIFilamentConfig extends FilamentConfig<RenderCallback, Pointer<Void>> {
FFIFilamentConfig(
{required super.backend,
required super.resourceLoader,
required super.driver,
required super.platform,
required super.sharedContext,
required super.uberArchivePath});
}
class FFIFilamentApp extends FilamentApp<Pointer> {
static FFIFilamentApp? _instance;
final Pointer<TEngine> engine;
final Pointer<TGltfAssetLoader> gltfAssetLoader;
final Pointer<TGltfResourceLoader> gltfResourceLoader;
@@ -47,53 +53,82 @@ class FFIFilamentApp extends FilamentApp<Pointer> {
transformManager: transformManager,
lightManager: lightManager,
renderableManager: renderableManager,
ubershaderMaterialProvider: ubershaderMaterialProvider);
ubershaderMaterialProvider: ubershaderMaterialProvider) {}
Future<FFIFilamentApp> create(FFIFilamentConfig config) async {
if (_instance == null) {
RenderLoop_destroy();
RenderLoop_create();
final engine = await withPointerCallback<TEngine>((cb) =>
Engine_createRenderThread(
TBackend.values[config.backend.index].index,
config.platform ?? nullptr,
config.sharedContext ?? nullptr,
config.stereoscopicEyeCount,
config.disableHandleUseAfterFreeCheck,
cb));
final gltfResourceLoader = await withPointerCallback<TGltfResourceLoader>(
(cb) => GltfResourceLoader_createRenderThread(engine, cb));
final gltfAssetLoader = await withPointerCallback<TGltfAssetLoader>(
(cb) => GltfAssetLoader_createRenderThread(engine, nullptr, cb));
final renderer = await withPointerCallback<TRenderer>(
(cb) => Engine_createRendererRenderThread(engine, cb));
final ubershaderMaterialProvider =
await withPointerCallback<TMaterialProvider>(
(cb) => GltfAssetLoader_getMaterialProvider(gltfAssetLoader));
final transformManager = Engine_getTransformManager(engine);
final lightManager = Engine_getLightManager(engine);
final renderableManager = Engine_getRenderableManager(engine);
final renderTicker = await withPointerCallback<TRenderTicker>(
(cb) => RenderTicker_create(renderer));
final nameComponentManager = NameComponentManager_create();
_instance = FFIFilamentApp(
engine,
gltfAssetLoader,
gltfResourceLoader,
renderer,
transformManager,
lightManager,
renderableManager,
ubershaderMaterialProvider,
renderTicker, nameComponentManager);
static Future create(FFIFilamentConfig config) async {
if (FilamentApp.instance != null) {
await FilamentApp.instance!.destroy();
}
return _instance!;
RenderLoop_destroy();
RenderLoop_create();
final engine = await withPointerCallback<TEngine>((cb) =>
Engine_createRenderThread(
TBackend.values[config.backend.index].index,
config.platform ?? nullptr,
config.sharedContext ?? nullptr,
config.stereoscopicEyeCount,
config.disableHandleUseAfterFreeCheck,
cb));
final gltfResourceLoader = await withPointerCallback<TGltfResourceLoader>(
(cb) => GltfResourceLoader_createRenderThread(engine, cb));
final gltfAssetLoader = await withPointerCallback<TGltfAssetLoader>(
(cb) => GltfAssetLoader_createRenderThread(engine, nullptr, cb));
final renderer = await withPointerCallback<TRenderer>(
(cb) => Engine_createRendererRenderThread(engine, cb));
final ubershaderMaterialProvider =
await withPointerCallback<TMaterialProvider>(
(cb) => GltfAssetLoader_getMaterialProvider(gltfAssetLoader));
final transformManager = Engine_getTransformManager(engine);
final lightManager = Engine_getLightManager(engine);
final renderableManager = Engine_getRenderableManager(engine);
final renderTicker = await withPointerCallback<TRenderTicker>(
(cb) => RenderTicker_create(renderer));
final nameComponentManager = NameComponentManager_create();
FilamentApp.instance = FFIFilamentApp(
engine,
gltfAssetLoader,
gltfResourceLoader,
renderer,
transformManager,
lightManager,
renderableManager,
ubershaderMaterialProvider,
renderTicker,
nameComponentManager);
}
final _views = <FFISwapChain, List<FFIView>>{};
final _viewMappings = <FFIView, FFISwapChain>{};
///
///
///
Future setRenderable(covariant FFIView view, bool renderable) async {
final swapChain = _viewMappings[view]!;
if (renderable && !_views[swapChain]!.contains(view)) {
_views[swapChain]!.add(view);
} else if (!renderable && _views[swapChain]!.contains(view)) {
_views[swapChain]!.remove(view);
}
final views = calloc<Pointer<TView>>(255);
for (final swapChain in _views.keys) {
var numViews = _views[swapChain]!.length;
for (int i = 0; i < numViews; i++) {
views[i] = _views[swapChain]![i].view;
}
RenderTicker_setRenderable(
renderTicker, swapChain.swapChain, views, numViews);
}
calloc.free(views);
}
@override
@@ -136,8 +171,12 @@ class FFIFilamentApp extends FilamentApp<Pointer> {
}
@override
Future destroy() {
throw UnimplementedError();
Future destroy() async {
for (final swapChain in _views.keys) {
for (final view in _views[swapChain]!) {
await setRenderable(view, false);
}
}
}
///
@@ -153,16 +192,316 @@ class FFIFilamentApp extends FilamentApp<Pointer> {
return FFIRenderTarget(renderTarget, this);
}
// ///
// ///
// ///
// Future<RenderTarget> createRenderTarget(int width, int height,
// {covariant FFITexture? color, covariant FFITexture? depth}) async {
// final renderTarget = await withPointerCallback<TRenderTarget>((cb) {
// RenderTarget_createRenderThread(app.engine, width, height,
// color?.pointer ?? nullptr, depth?.pointer ?? nullptr, cb);
// });
///
///
///
Future<Texture> createTexture(int width, int height,
{int depth = 1,
int levels = 1,
Set<TextureUsage> flags = const {TextureUsage.TEXTURE_USAGE_SAMPLEABLE},
TextureSamplerType textureSamplerType = TextureSamplerType.SAMPLER_2D,
TextureFormat textureFormat = TextureFormat.RGBA16F,
int? importedTextureHandle}) async {
var bitmask = flags.fold(0, (a, b) => a | b.index);
final texturePtr = await withPointerCallback<TTexture>((cb) {
Texture_buildRenderThread(
engine!,
width,
height,
depth,
levels,
importedTextureHandle ?? 0,
bitmask,
TTextureSamplerType.values[textureSamplerType.index],
TTextureFormat.values[textureFormat.index],
cb);
});
if (texturePtr == nullptr) {
throw Exception("Failed to create texture");
}
return FFITexture(
engine!,
texturePtr,
);
}
// return FFIRenderTarget(renderTarget, app);
// }
Future<TextureSampler> createTextureSampler(
{TextureMinFilter minFilter = TextureMinFilter.LINEAR,
TextureMagFilter magFilter = TextureMagFilter.LINEAR,
TextureWrapMode wrapS = TextureWrapMode.CLAMP_TO_EDGE,
TextureWrapMode wrapT = TextureWrapMode.CLAMP_TO_EDGE,
TextureWrapMode wrapR = TextureWrapMode.CLAMP_TO_EDGE,
double anisotropy = 0.0,
TextureCompareMode compareMode = TextureCompareMode.NONE,
TextureCompareFunc compareFunc = TextureCompareFunc.LESS_EQUAL}) async {
final samplerPtr = TextureSampler_create();
TextureSampler_setMinFilter(
samplerPtr, TSamplerMinFilter.values[minFilter.index]);
TextureSampler_setMagFilter(
samplerPtr, TSamplerMagFilter.values[magFilter.index]);
TextureSampler_setWrapModeS(
samplerPtr, TSamplerWrapMode.values[wrapS.index]);
TextureSampler_setWrapModeT(
samplerPtr, TSamplerWrapMode.values[wrapT.index]);
TextureSampler_setWrapModeR(
samplerPtr, TSamplerWrapMode.values[wrapR.index]);
if (anisotropy > 0) {
TextureSampler_setAnisotropy(samplerPtr, anisotropy);
}
TextureSampler_setCompareMode(
samplerPtr,
TSamplerCompareMode.values[compareMode.index],
TSamplerCompareFunc.values[compareFunc.index]);
return FFITextureSampler(samplerPtr);
}
///
///
///
Future<LinearImage> decodeImage(Uint8List data) async {
final name = "image";
var ptr = Image_decode(
data.address,
data.length,
name.toNativeUtf8().cast<Char>(),
);
if (ptr == nullptr) {
throw Exception("Failed to decode image");
}
return FFILinearImage(ptr);
}
///
/// Creates an (empty) imge with the given dimensions.
///
Future<LinearImage> createImage(int width, int height, int channels) async {
final ptr = Image_createEmpty(width, height, channels);
return FFILinearImage(ptr);
}
///
///
///
Future<Material> createMaterial(Uint8List data) async {
var ptr = await withPointerCallback<TMaterial>((cb) {
Engine_buildMaterialRenderThread(engine!, data.address, data.length, cb);
});
return FFIMaterial(ptr, this);
}
///
///
///
Future<MaterialInstance> createUbershaderMaterialInstance(
{bool doubleSided = false,
bool unlit = false,
bool hasVertexColors = false,
bool hasBaseColorTexture = false,
bool hasNormalTexture = false,
bool hasOcclusionTexture = false,
bool hasEmissiveTexture = false,
bool useSpecularGlossiness = false,
AlphaMode alphaMode = AlphaMode.OPAQUE,
bool enableDiagnostics = false,
bool hasMetallicRoughnessTexture = false,
int metallicRoughnessUV = 0,
int baseColorUV = 0,
bool hasClearCoatTexture = false,
int clearCoatUV = 0,
bool hasClearCoatRoughnessTexture = false,
int clearCoatRoughnessUV = 0,
bool hasClearCoatNormalTexture = false,
int clearCoatNormalUV = 0,
bool hasClearCoat = false,
bool hasTransmission = false,
bool hasTextureTransforms = false,
int emissiveUV = 0,
int aoUV = 0,
int normalUV = 0,
bool hasTransmissionTexture = false,
int transmissionUV = 0,
bool hasSheenColorTexture = false,
int sheenColorUV = 0,
bool hasSheenRoughnessTexture = false,
int sheenRoughnessUV = 0,
bool hasVolumeThicknessTexture = false,
int volumeThicknessUV = 0,
bool hasSheen = false,
bool hasIOR = false,
bool hasVolume = false}) async {
final key = Struct.create<TMaterialKey>();
key.doubleSided = doubleSided;
key.unlit = unlit;
key.hasVertexColors = hasVertexColors;
key.hasBaseColorTexture = hasBaseColorTexture;
key.hasNormalTexture = hasNormalTexture;
key.hasOcclusionTexture = hasOcclusionTexture;
key.hasEmissiveTexture = hasEmissiveTexture;
key.useSpecularGlossiness = useSpecularGlossiness;
key.alphaMode = alphaMode.index;
key.enableDiagnostics = enableDiagnostics;
key.unnamed.unnamed.hasMetallicRoughnessTexture =
hasMetallicRoughnessTexture;
key.unnamed.unnamed.metallicRoughnessUV = 0;
key.baseColorUV = baseColorUV;
key.hasClearCoatTexture = hasClearCoatTexture;
key.clearCoatUV = clearCoatUV;
key.hasClearCoatRoughnessTexture = hasClearCoatRoughnessTexture;
key.clearCoatRoughnessUV = clearCoatRoughnessUV;
key.hasClearCoatNormalTexture = hasClearCoatNormalTexture;
key.clearCoatNormalUV = clearCoatNormalUV;
key.hasClearCoat = hasClearCoat;
key.hasTransmission = hasTransmission;
key.hasTextureTransforms = hasTextureTransforms;
key.emissiveUV = emissiveUV;
key.aoUV = aoUV;
key.normalUV = normalUV;
key.hasTransmissionTexture = hasTransmissionTexture;
key.transmissionUV = transmissionUV;
key.hasSheenColorTexture = hasSheenColorTexture;
key.sheenColorUV = sheenColorUV;
key.hasSheenRoughnessTexture = hasSheenRoughnessTexture;
key.sheenRoughnessUV = sheenRoughnessUV;
key.hasVolumeThicknessTexture = hasVolumeThicknessTexture;
key.volumeThicknessUV = volumeThicknessUV;
key.hasSheen = hasSheen;
key.hasIOR = hasIOR;
key.hasVolume = hasVolume;
final materialInstance = await withPointerCallback<TMaterialInstance>((cb) {
MaterialProvider_createMaterialInstanceRenderThread(
ubershaderMaterialProvider, key.address, cb);
});
if (materialInstance == nullptr) {
throw Exception("Failed to create material instance");
}
var instance = FFIMaterialInstance(materialInstance, this);
return instance;
}
///
///
///
Future<FFIMaterialInstance> createUnlitMaterialInstance() async {
final instance = await createUbershaderMaterialInstance(unlit: true);
return instance as FFIMaterialInstance;
}
FFIMaterial? _gridMaterial;
Future<FFIMaterial> get gridMaterial async {
_gridMaterial ??= FFIMaterial(Material_createGridMaterial(), this);
return _gridMaterial!;
}
///
///
///
@override
Future<ThermionAsset> createGeometry(Geometry geometry,
{List<MaterialInstance>? materialInstances,
bool keepData = false}) async {
var assetPtr = await withPointerCallback<TSceneAsset>((callback) {
var ptrList = Int64List(materialInstances?.length ?? 0);
if (materialInstances != null && materialInstances.isNotEmpty) {
ptrList.setRange(
0,
materialInstances.length,
materialInstances
.cast<FFIMaterialInstance>()
.map((mi) => mi.pointer.address)
.toList());
}
return SceneAsset_createGeometryRenderThread(
engine,
geometry.vertices.address,
geometry.vertices.length,
geometry.normals.address,
geometry.normals.length,
geometry.uvs.address,
geometry.uvs.length,
geometry.indices.address,
geometry.indices.length,
geometry.primitiveType.index,
ptrList.address.cast<Pointer<TMaterialInstance>>(),
ptrList.length,
callback);
});
if (assetPtr == nullptr) {
throw Exception("Failed to create geometry");
}
var asset = FFIAsset(assetPtr, this);
return asset;
}
///
///
///
Future<MaterialInstance> getMaterialInstanceAt(
ThermionEntity entity, int index) async {
final instancePtr = RenderableManager_getMaterialInstanceAt(
renderableManager, entity, index);
final instance = FFIMaterialInstance(instancePtr, this);
return instance;
}
///
///
///
@override
Future render() async {
RenderTicker_renderRenderThread(renderTicker, 0);
}
@override
Future register(
covariant FFISwapChain swapChain, covariant FFIView view) async {
_viewMappings[view] = swapChain;
}
final _hooks = <Future Function()>[];
@override
Future registerRequestFrameHook(Future Function() hook) async {
if (!_hooks.contains(hook)) {
_hooks.add(hook);
}
}
@override
Future unregisterRequestFrameHook(Future Function() hook) async {
if (_hooks.contains(hook)) {
_hooks.remove(hook);
}
}
///
///
///
@override
Future requestFrame() async {
for (final hook in _hooks) {
await hook.call();
}
final completer = Completer();
final callback = NativeCallable<Void Function()>.listener(() {
completer.complete(true);
});
RenderLoop_requestAnimationFrame(callback.nativeFunction.cast());
try {
await completer.future.timeout(Duration(seconds: 1));
} catch (err) {
print("WARNING - render call timed out");
}
}
}

View File

@@ -1,14 +1,12 @@
import 'dart:async';
import 'package:thermion_dart/src/viewer/src/ffi/src/callbacks.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_asset.dart';
import 'package:thermion_dart/src/viewer/src/shared_types/entities.dart';
import 'thermion_dart.g.dart';
import 'package:thermion_dart/thermion_dart.dart';
import 'package:vector_math/vector_math_64.dart';
import 'ffi_view.dart';
class FFIGizmo extends FFIAsset implements GizmoAsset {
final Set<ThermionEntity> gizmoEntities;
late NativeCallable<GizmoPickCallbackFunction> _nativeCallback;

View File

@@ -1,7 +1,7 @@
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_asset.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_filament_app.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_render_target.dart';
import 'package:thermion_dart/src/viewer/src/shared_types/scene.dart';
import 'package:thermion_dart/src/filament/src/scene.dart';
import 'callbacks.dart';

View File

@@ -2,8 +2,8 @@ import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_filament_app.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_render_target.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_scene.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_swapchain.dart';
import 'package:thermion_dart/src/viewer/src/shared_types/layers.dart';
import 'package:thermion_dart/src/viewer/src/shared_types/shared_types.dart';
import 'package:thermion_dart/src/filament/src/layers.dart';
import 'package:thermion_dart/src/filament/src/shared_types.dart';
import 'callbacks.dart';
import 'ffi_camera.dart';
@@ -66,10 +66,6 @@ class FFIView extends View {
View_setPostProcessing(view, enabled);
}
Future setRenderable(bool renderable, FFISwapChain swapChain) async {
throw UnimplementedError();
}
@override
Future setFrustumCullingEnabled(bool enabled) async {
View_setFrustumCullingEnabled(view, enabled);
@@ -84,7 +80,8 @@ class FFIView extends View {
@override
Future setToneMapper(ToneMapper mapper) async {
View_setToneMappingRenderThread(view, app.engine, TToneMapping.values[mapper.index].value);
View_setToneMappingRenderThread(
view, app.engine, TToneMapping.values[mapper.index].value);
}
Future setStencilBufferEnabled(bool enabled) async {
@@ -111,7 +108,7 @@ class FFIView extends View {
Future setScene(covariant FFIScene scene) async {
await withVoidCallback((cb) => View_setScene(view, scene.scene));
}
@override
Future setLayerVisibility(VisibilityLayers layer, bool visible) async {
View_setLayerEnabled(view, layer.value, visible);

View File

@@ -0,0 +1,13 @@
import 'package:thermion_dart/src/viewer/src/ffi/src/callbacks.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_asset.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_filament_app.dart';
class GridOverlay extends FFIAsset {
GridOverlay(super.asset, super.app);
static Future<GridOverlay> create(FFIFilamentApp app) async {
final gridMaterial = await app.gridMaterial;
final asset = SceneAsset_createGrid(app.engine, gridMaterial.pointer);
return GridOverlay(asset, app);
}
}

View File

@@ -25,6 +25,12 @@ external ffi.Pointer<TMaterialInstance> Material_createInstance(
ffi.Pointer<TMaterial> tMaterial,
);
@ffi.Native<ffi.Pointer<TMaterial> Function()>(isLeaf: true)
external ffi.Pointer<TMaterial> Material_createImageMaterial();
@ffi.Native<ffi.Pointer<TMaterial> Function()>(isLeaf: true)
external ffi.Pointer<TMaterial> Material_createGridMaterial();
@ffi.Native<ffi.Bool Function(ffi.Pointer<TMaterial>, ffi.Pointer<ffi.Char>)>(
isLeaf: true)
external bool Material_hasParameter(
@@ -1227,6 +1233,11 @@ external double Camera_getFov(
bool horizontal,
);
@ffi.Native<ffi.Double Function(ffi.Pointer<TCamera>)>(isLeaf: true)
external double Camera_getFocusDistance(
ffi.Pointer<TCamera> camera,
);
@ffi.Native<ffi.Void Function(ffi.Pointer<TCamera>, ffi.Float)>(isLeaf: true)
external void Camera_setFocusDistance(
ffi.Pointer<TCamera> camera,
@@ -1324,11 +1335,12 @@ external void TransformManager_setTransform(
double4x4 transform,
);
@ffi.Native<ffi.Void Function(ffi.Pointer<TTransformManager>, EntityId)>(
@ffi.Native<ffi.Void Function(ffi.Pointer<TTransformManager>, EntityId, Aabb3)>(
isLeaf: true)
external void TransformManager_transformToUnitCube(
ffi.Pointer<TTransformManager> tTransformManager,
int entityId,
Aabb3 boundingBox,
);
@ffi.Native<
@@ -1458,7 +1470,7 @@ external void RenderTicker_render(
ffi.Void Function(ffi.Pointer<TRenderTicker>, ffi.Pointer<TSwapChain>,
ffi.Pointer<ffi.Pointer<TView>>, ffi.Uint8)>(isLeaf: true)
external void RenderTicker_setRenderable(
ffi.Pointer<TRenderTicker> tFilamentRender,
ffi.Pointer<TRenderTicker> tRenderTicker,
ffi.Pointer<TSwapChain> swapChain,
ffi.Pointer<ffi.Pointer<TView>> views,
int numViews,
@@ -2719,15 +2731,15 @@ external void TextureSampler_destroyRenderThread(
@ffi.Native<
ffi.Void Function(
ffi.Pointer<TSceneManager>,
ffi.Pointer<TAnimationManager>,
EntityId,
ffi.Int,
ffi.Int,
ffi.Pointer<ffi.Float>,
ffi.Pointer<ffi.NativeFunction<ffi.Void Function(ffi.Bool)>>)>(
isLeaf: true)
external void set_bone_transform_render_thread(
ffi.Pointer<TSceneManager> sceneManager,
external void AnimationManager_setBoneTransformRenderThread(
ffi.Pointer<TAnimationManager> tAnimationManager,
int asset,
int skinIndex,
int boneIndex,
@@ -2736,10 +2748,10 @@ external void set_bone_transform_render_thread(
);
@ffi.Native<
ffi.Void Function(ffi.Pointer<TSceneManager>, EntityId,
ffi.Void Function(ffi.Pointer<TAnimationManager>, EntityId,
ffi.Pointer<ffi.NativeFunction<ffi.Void Function()>>)>(isLeaf: true)
external void reset_to_rest_pose_render_thread(
ffi.Pointer<TSceneManager> sceneManager,
external void AnimationManager_resetToRestPoseRenderThread(
ffi.Pointer<TAnimationManager> tAnimationManager,
int entityId,
ffi.Pointer<ffi.NativeFunction<ffi.Void Function()>> callback,
);
@@ -3181,6 +3193,14 @@ external ffi.Pointer<TSceneAsset> SceneAsset_loadGltf(
int numInstances,
);
@ffi.Native<
ffi.Pointer<TSceneAsset> Function(
ffi.Pointer<TEngine>, ffi.Pointer<TMaterial>)>(isLeaf: true)
external ffi.Pointer<TSceneAsset> SceneAsset_createGrid(
ffi.Pointer<TEngine> tEngine,
ffi.Pointer<TMaterial> tMaterial,
);
@ffi.Native<ffi.Void Function(ffi.Pointer<TSceneAsset>)>(isLeaf: true)
external void SceneAsset_destroy(
ffi.Pointer<TSceneAsset> tSceneAsset,

View File

@@ -1,3 +1,4 @@
library;
export 'src/thermion_viewer_ffi.dart' show ThermionViewerFFI;

View File

@@ -1,78 +0,0 @@
import 'package:thermion_dart/src/viewer/src/shared_types/engine.dart';
import 'package:thermion_dart/thermion_dart.dart';
class FilamentConfig<T, U> {
final Backend backend;
final T? renderCallback;
final U? renderCallbackOwner;
final U resourceLoader;
final U? platform;
final U? driver;
final U? sharedContext;
final String uberArchivePath;
final int stereoscopicEyeCount;
final bool disableHandleUseAfterFreeCheck;
FilamentConfig(
{required this.backend,
required this.resourceLoader,
required this.uberArchivePath,
this.renderCallback,
this.renderCallbackOwner,
this.platform,
this.driver,
this.sharedContext,
this.stereoscopicEyeCount = 1,
this.disableHandleUseAfterFreeCheck = false});
}
abstract class FilamentApp<T> {
final T engine;
final T gltfAssetLoader;
final T gltfResourceLoader;
final T renderer;
final T transformManager;
final T lightManager;
final T renderableManager;
final T ubershaderMaterialProvider;
FilamentApp(
{required this.engine,
required this.gltfAssetLoader,
required this.gltfResourceLoader,
required this.renderer,
required this.transformManager,
required this.lightManager,
required this.renderableManager,
required this.ubershaderMaterialProvider
});
///
///
///
Future<SwapChain> createHeadlessSwapChain(int width, int height,
{bool hasStencilBuffer = false});
///
///
///
Future<SwapChain> createSwapChain(T handle, {bool hasStencilBuffer = false});
///
///
///
Future destroySwapChain(SwapChain swapChain);
///
///
///
Future destroy();
///
///
///
Future<RenderTarget> createRenderTarget(
int width, int height, { covariant Texture? color, covariant Texture? depth });
}

View File

@@ -1,42 +0,0 @@
import 'package:thermion_dart/src/viewer/src/shared_types/layers.dart';
import 'package:vector_math/vector_math_64.dart';
import '../thermion_viewer_base.dart';
enum Projection { Perspective, Orthographic }
abstract class Camera {
Future lookAt(Vector3 position, {Vector3? focus, Vector3? up}) async {
focus ??= Vector3.zero();
up ??= Vector3(0, 1, 0);
final viewMatrix = makeViewMatrix(position, focus, up);
viewMatrix.invert();
await setModelMatrix(viewMatrix);
}
Future setProjection(Projection projection, double left, double right,
double bottom, double top, double near, double far);
Future setProjectionMatrixWithCulling(
Matrix4 projectionMatrix, double near, double far);
Future setLensProjection(
{double near = kNear,
double far = kFar,
double aspect = 1.0,
double focalLength = kFocalLength});
Future<Matrix4> getViewMatrix();
Future<Matrix4> getModelMatrix();
Future<Matrix4> getProjectionMatrix();
Future<Matrix4> getCullingProjectionMatrix();
Future setModelMatrix(Matrix4 matrix);
ThermionEntity getEntity();
Future setTransform(Matrix4 transform);
Future<double> getNear();
Future<double> getCullingFar();
Future<double> getFocalLength();
Future destroy();
}

View File

@@ -1,28 +0,0 @@
enum Backend {
/// !< Automatically selects an appropriate driver for the platform.
DEFAULT(0),
/// !< Selects the OpenGL/ES driver (default on Android)
OPENGL(1),
/// !< Selects the Vulkan driver if the platform supports it (default on Linux/Windows)
VULKAN(2),
/// !< Selects the Metal driver if the platform supports it (default on MacOS/iOS).
METAL(3),
/// !< Selects the no-op driver for testing purposes.
NOOP(4);
final int value;
const Backend(this.value);
static Backend fromValue(int value) => switch (value) {
0 => DEFAULT,
1 => OPENGL,
2 => VULKAN,
3 => METAL,
4 => NOOP,
_ => throw ArgumentError("Unknown value for TBackend: $value"),
};
}

View File

@@ -1,96 +0,0 @@
library;
import 'package:thermion_dart/thermion_dart.dart';
import 'package:vector_math/vector_math_64.dart';
export 'geometry.dart';
export 'gltf.dart';
export 'light_options.dart';
// handle manipulate an Entity
typedef ThermionEntity = int;
abstract class ThermionAsset {
///
///
///
ThermionEntity get entity;
///
///
///
Future<List<ThermionEntity>> getChildEntities();
///
///
///
Future setMaterialInstanceAt(covariant MaterialInstance instance);
///
/// Renders an outline around [entity] with the given color.
///
Future setStencilHighlight(
{double r = 1.0, double g = 0.0, double b = 0.0, int? entityIndex});
///
/// Removes the outline around [entity]. Noop if there was no highlight.
///
Future removeStencilHighlight();
///
/// When visible is [true], renders the bounding box.
///
Future setBoundingBoxVisibility(bool visible);
///
///
///
Future<ThermionAsset> getInstance(int index);
///
/// Create a new instance of [entity].
/// Instances are not automatically added to the scene; you must
/// call [addToScene].
///
Future<ThermionAsset> createInstance(
{covariant List<MaterialInstance>? materialInstances = null});
///
/// Returns the number of instances associated with this asset.
///
Future<int> getInstanceCount();
///
/// Returns all instances of associated with this asset.
///
Future<List<ThermionAsset>> getInstances();
Future setCastShadows(bool castShadows);
Future setReceiveShadows(bool castShadows);
}
enum Axis {
X(const [1.0, 0.0, 0.0]),
Y(const [0.0, 1.0, 0.0]),
Z(const [0.0, 0.0, 1.0]);
const Axis(this.vector);
final List<double> vector;
Vector3 asVector() => Vector3(vector[0], vector[1], vector[2]);
}
enum GizmoPickResultType { AxisX, AxisY, AxisZ, Parent, None }
enum GizmoType { translation, rotation }
abstract class GizmoAsset extends ThermionAsset {
Future pick(int x, int y,
{Future Function(GizmoPickResultType axis, Vector3 coords)? handler});
Future highlight(Axis axis);
Future unhighlight();
bool isNonPickable(ThermionEntity entity);
bool isGizmoEntity(ThermionEntity entity);
}

View File

@@ -1,3 +0,0 @@
import 'package:thermion_dart/thermion_dart.dart';
final ThermionEntity FILAMENT_ENTITY_NULL = 0;

View File

@@ -1,32 +0,0 @@
import 'dart:typed_data';
import '../../viewer.dart';
class Geometry {
final Float32List vertices;
final Uint16List indices;
final Float32List normals;
final Float32List uvs;
final PrimitiveType primitiveType;
Geometry(
this.vertices,
List<int> indices, {
Float32List? normals,
Float32List? uvs,
this.primitiveType = PrimitiveType.TRIANGLES,
}) : indices = Uint16List.fromList(indices),
normals = normals ?? Float32List(0),
uvs = uvs ?? Float32List(0) {
assert(this.uvs.length == 0 || this.uvs.length == (vertices.length ~/ 3 * 2), "Expected either zero or ${indices.length * 2} UVs, got ${this.uvs.length}");
}
void scale(double factor) {
for (int i = 0; i < vertices.length; i++) {
vertices[i] = vertices[i] * factor;
}
}
bool get hasNormals => normals.isNotEmpty;
bool get hasUVs => uvs.isNotEmpty;
}

View File

@@ -1,6 +0,0 @@
class GLTF {
final String uri;
final int numInstances;
GLTF(this.uri, this.numInstances);
}

View File

@@ -1,18 +0,0 @@
const double kNear = 0.05;
const double kFar = 1000.0;
const double kFocalLength = 28.0;
enum VisibilityLayers {
DEFAULT_ASSET(0),
LAYER_1(1),
LAYER_2(2),
LAYER_3(3),
LAYER_4(4),
LAYER_5(5),
BACKGROUND(6),
OVERLAY(7);
final int value;
const VisibilityLayers(this.value);
}

View File

@@ -1,7 +0,0 @@
enum LightType {
SUN, //!< Directional light that also draws a sun's disk in the sky.
DIRECTIONAL, //!< Directional light, emits light in a given direction.
POINT, //!< Point light, emits light from a position, in all directions.
FOCUSED_SPOT, //!< Physically correct spot light.
SPOT,
}

View File

@@ -1,98 +0,0 @@
import 'dart:math';
import 'package:vector_math/vector_math_64.dart' as v;
import 'package:vector_math/vector_math_64.dart';
import 'light.dart';
class IBL {
String? iblPath;
final double iblIntensity;
IBL(this.iblIntensity);
}
class DirectLight {
final LightType type;
final double color;
final double intensity;
final bool castShadows;
late final v.Vector3 position;
late final v.Vector3 direction;
final double falloffRadius;
final double spotLightConeInner;
final double spotLightConeOuter;
final double sunAngularRadius;
final double sunHaloSize;
final double sunHaloFallof;
DirectLight({
required this.type,
required this.color,
required this.intensity,
this.castShadows = false,
required this.direction,
required this.position,
this.falloffRadius = 1.0,
this.spotLightConeInner = pi / 8,
this.spotLightConeOuter = pi / 4,
this.sunAngularRadius = 0.545,
this.sunHaloSize = 10.0,
this.sunHaloFallof = 80.0,
});
DirectLight.point({
double color = 6500,
double intensity = 100000,
bool castShadows = false,
Vector3? position,
double falloffRadius = 1.0,
}) : this(
type: LightType.POINT,
color: color,
intensity: intensity,
castShadows: castShadows,
position: position ?? Vector3(0, 1, 0),
direction: Vector3.zero(),
falloffRadius: falloffRadius,
);
DirectLight.sun({
double color = 6500,
double intensity = 100000,
bool castShadows = true,
Vector3? direction,
double sunAngularRadius = 0.545,
double sunHaloSize = 10.0,
double sunHaloFalloff = 80.0,
}) : this(
type: LightType.DIRECTIONAL,
color: color,
intensity: intensity,
castShadows: castShadows,
position: Vector3(0, 0, 0),
direction: direction ?? Vector3(0, -1, 0),
sunAngularRadius: sunAngularRadius,
sunHaloSize: sunHaloSize,
sunHaloFallof: sunHaloFalloff,
);
DirectLight.spot({
double color = 6500,
double intensity = 100000,
bool castShadows = true,
Vector3? position,
Vector3? direction,
double falloffRadius = 1.0,
double spotLightConeInner = pi / 8,
double spotLightConeOuter = pi / 4,
}) : this(
type: LightType.SPOT,
color: color,
intensity: intensity,
castShadows: castShadows,
position: position ?? Vector3(0, 1, 0),
direction: direction ?? Vector3(0, -1, 0),
falloffRadius: falloffRadius,
spotLightConeInner: spotLightConeInner,
spotLightConeOuter: spotLightConeOuter,
);
}

View File

@@ -1,4 +0,0 @@
// see filament Manipulator.h for more details
@Deprecated(
"This is used the native pointer manipulator Prefer InputHandler instead")
enum ManipulatorMode { ORBIT, MAP, FREE_FLIGHT }

View File

@@ -1,150 +0,0 @@
import 'dart:typed_data';
import 'package:thermion_dart/thermion_dart.dart';
import 'package:vector_math/vector_math_64.dart';
enum SamplerCompareFunction {
/// !< Less or equal
LE,
/// !< Greater or equal
GE,
/// !< Strictly less than
L,
/// !< Strictly greater than
G,
/// !< Equal
E,
/// !< Not equal
NE,
/// !< Always. Depth / stencil testing is deactivated.
A,
/// !< Never. The depth / stencil test always fails.
N;
}
/// Defines stencil operations
enum StencilOperation {
/// Keep the current value
KEEP,
/// Set the value to zero
ZERO,
/// Set the value to reference value
REPLACE,
/// Increment the current value with saturation
INCR,
/// Increment the current value without saturation
INCR_WRAP,
/// Decrement the current value with saturation
DECR,
/// Decrement the current value without saturation
DECR_WRAP,
/// Invert the current value
INVERT
}
enum CullingMode {
NONE, // No culling
FRONT, // Cull front faces
BACK, // Cull back faces
FRONT_AND_BACK // Cull both front and back faces
}
/// Defines which face(s) the stencil operation affects
enum StencilFace {
/// Front face only
FRONT,
/// Back face only
BACK,
/// Both front and back faces
FRONT_AND_BACK
}
enum AlphaMode { OPAQUE, MASK, BLEND }
enum TransparencyMode {
//! the transparent object is drawn honoring the raster state
DEFAULT,
/**
* the transparent object is first drawn in the depth buffer,
* then in the color buffer, honoring the culling mode, but ignoring the depth test function
*/
TWO_PASSES_ONE_SIDE,
/**
* the transparent object is drawn twice in the color buffer,
* first with back faces only, then with front faces; the culling
* mode is ignored. Can be combined with two-sided lighting
*/
TWO_PASSES_TWO_SIDES
}
abstract class Material {
Future<MaterialInstance> createInstance();
Future<bool> hasParameter(String propertyName);
Future destroy();
}
abstract class MaterialInstance {
Future<bool> isStencilWriteEnabled();
Future setDepthWriteEnabled(bool enabled);
Future setDepthFunc(SamplerCompareFunction depthFunc);
Future setDepthCullingEnabled(bool enabled);
Future setParameterFloat(String name, double x);
Future setParameterFloat2(String name, double x, double y);
Future setParameterFloat3(String name, double x, double y, double z);
Future setParameterFloat3Array(String name, List<Vector3> data);
Future setParameterFloat4(
String name, double x, double y, double z, double w);
Future setParameterInt(String name, int value);
Future setParameterBool(String name, bool value);
Future setParameterTexture(
String name, covariant Texture texture, covariant TextureSampler sampler);
/// Sets the stencil operation to be performed when the stencil test fails
Future setStencilOpStencilFail(StencilOperation op,
[StencilFace face = StencilFace.FRONT_AND_BACK]);
/// Sets the stencil operation to be performed when the depth test fails
Future setStencilOpDepthFail(StencilOperation op,
[StencilFace face = StencilFace.FRONT_AND_BACK]);
/// Sets the stencil operation to be performed when both depth and stencil tests pass
Future setStencilOpDepthStencilPass(StencilOperation op,
[StencilFace face = StencilFace.FRONT_AND_BACK]);
/// Sets the stencil test comparison function
Future setStencilCompareFunction(SamplerCompareFunction func,
[StencilFace face = StencilFace.FRONT_AND_BACK]);
/// Sets the reference value used for stencil testing
Future setStencilReferenceValue(int value,
[StencilFace face = StencilFace.FRONT_AND_BACK]);
Future setStencilWriteEnabled(bool enabled);
Future setCullingMode(CullingMode cullingMode);
Future setStencilReadMask(int mask);
Future setStencilWriteMask(int mask);
Future setTransparencyMode(TransparencyMode mode);
Future destroy();
}

View File

@@ -1,17 +0,0 @@
import '../../viewer.dart';
/// The result of a picking operation (see [ThermionViewer.pick] for more details).
/// [x] and [y] refer to the original screen coordinates used to call [pick]; this should
/// match the values of [fragX] and [fragY]. [fragZ] is the depth value in screen coordinates,
/// [depth] is the value in the depth buffer (i.e. fragZ = 1.0 - depth).
///
typedef FilamentPickResult = ({
ThermionEntity entity,
int x,
int y,
double depth,
double fragX,
double fragY,
double fragZ
});
typedef PickResult = FilamentPickResult;

View File

@@ -1,10 +0,0 @@
// copied from filament/backened/DriverEnums.h
enum PrimitiveType {
// don't change the enums values (made to match GL)
POINTS, //!< points
LINES, //!< lines
UNUSED1,
LINE_STRIP, //!< line strip
TRIANGLES, //!< triangles
TRIANGLE_STRIP, //!< triangle strip
}

View File

@@ -1,7 +0,0 @@
import 'package:thermion_dart/thermion_dart.dart';
abstract class RenderTarget {
Future<Texture> getColorTexture();
Future<Texture> getDepthTexture();
Future destroy();
}

View File

@@ -1,6 +0,0 @@
import 'package:thermion_dart/src/viewer/src/thermion_viewer_base.dart';
abstract class Scene {
Future add(covariant ThermionAsset asset);
Future remove(covariant ThermionAsset asset);
}

View File

@@ -1,6 +0,0 @@
enum ShadowType {
PCF, //!< percentage-closer filtered shadows (default)
VSM, //!< variance shadows
DPCF, //!< PCF with contact hardening simulation
PCSS, //!< PCF with soft shadows and contact hardening
}

View File

@@ -1,16 +0,0 @@
library shared_types;
export 'swap_chain.dart';
export 'view.dart';
export 'render_target.dart';
export 'camera.dart';
export 'material.dart';
export 'texture.dart';
export 'entities.dart';
export 'light.dart';
export 'shadow.dart';
export 'manipulator.dart';
export 'pick_result.dart';
export 'primitive.dart';
export 'texture_details.dart';
export 'tone_mapper.dart';

View File

@@ -1,3 +0,0 @@
abstract class SwapChain {
}

View File

@@ -1,455 +0,0 @@
import 'dart:typed_data';
/// Defines the type of sampler to use with a texture
enum TextureSamplerType {
SAMPLER_2D,
SAMPLER_2D_ARRAY,
SAMPLER_CUBEMAP,
SAMPLER_EXTERNAL,
SAMPLER_3D,
SAMPLER_CUBEMAP_ARRAY
}
/// Defines internal texture formats
enum TextureFormat {
// 8-bits per element
R8, // R 8-bits
R8_SNORM, // R 8-bits (signed normalized)
R8UI, // R 8-bits (unsigned integer)
R8I, // R 8-bits (signed integer)
STENCIL8, // Stencil 8-bits
// 16-bits per element
R16F, // R 16-bits (float)
R16UI, // R 16-bits (unsigned integer)
R16I, // R 16-bits (signed integer)
RG8, // RG 8-bits each
RG8_SNORM, // RG 8-bits each (signed normalized)
RG8UI, // RG 8-bits each (unsigned integer)
RG8I, // RG 8-bits each (signed integer)
RGB565, // RGB 5-6-5 bits
RGB9_E5, // RGB9_E5 format
RGB5_A1, // RGB 5 bits each, A 1 bit
RGBA4, // RGBA 4 bits each
DEPTH16, // Depth 16-bits
// 24-bits per element
RGB8, // RGB 8-bits each
SRGB8, // RGB 8-bits each (sRGB color space)
RGB8_SNORM, // RGB 8-bits each (signed normalized)
RGB8UI, // RGB 8-bits each (unsigned integer)
RGB8I, // RGB 8-bits each (signed integer)
DEPTH24, // Depth 24-bits
// 32-bits per element
R32F, // R 32-bits (float)
R32UI, // R 32-bits (unsigned integer)
R32I, // R 32-bits (signed integer)
RG16F, // RG 16-bits each (float)
RG16UI, // RG 16-bits each (unsigned integer)
RG16I, // RG 16-bits each (signed integer)
R11F_G11F_B10F, // R11F_G11F_B10F format
RGBA8, // RGBA 8-bits each
SRGB8_A8, // RGB 8-bits each (sRGB), A 8-bits
RGBA8_SNORM, // RGBA 8-bits each (signed normalized)
UNUSED, // used to be rgbm
RGB10_A2, // RGB 10-bits each, A 2-bits
RGBA8UI, // RGBA 8-bits each (unsigned integer)
RGBA8I, // RGBA 8-bits each (signed integer)
DEPTH32F, // Depth 32-bits (float)
DEPTH24_STENCIL8, // Depth 24-bits, Stencil 8-bits
DEPTH32F_STENCIL8, // Depth 32-bits (float), Stencil 8-bits
// 48-bits per element
RGB16F, // RGB 16-bits each (float)
RGB16UI, // RGB 16-bits each (unsigned integer)
RGB16I, // RGB 16-bits each (signed integer)
// 64-bits per element
RG32F, // RG 32-bits each (float)
RG32UI, // RG 32-bits each (unsigned integer)
RG32I, // RG 32-bits each (signed integer)
RGBA16F, // RGBA 16-bits each (float)
RGBA16UI, // RGBA 16-bits each (unsigned integer)
RGBA16I, // RGBA 16-bits each (signed integer)
// 96-bits per element
RGB32F, // RGB 32-bits each (float)
RGB32UI, // RGB 32-bits each (unsigned integer)
RGB32I, // RGB 32-bits each (signed integer)
// 128-bits per element
RGBA32F, // RGBA 32-bits each (float)
RGBA32UI, // RGBA 32-bits each (unsigned integer)
RGBA32I, // RGBA 32-bits each (signed integer)
// Compressed formats
EAC_R11, // EAC R11 (compressed)
EAC_R11_SIGNED, // EAC R11 (compressed, signed)
EAC_RG11, // EAC RG11 (compressed)
EAC_RG11_SIGNED, // EAC RG11 (compressed, signed)
ETC2_RGB8, // ETC2 RGB8 (compressed)
ETC2_SRGB8, // ETC2 RGB8 (compressed, sRGB)
ETC2_RGB8_A1, // ETC2 RGB8A1 (compressed)
ETC2_SRGB8_A1, // ETC2 RGB8A1 (compressed, sRGB)
ETC2_EAC_RGBA8, // ETC2 RGBA8 (compressed)
ETC2_EAC_SRGBA8, // ETC2 RGBA8 (compressed, sRGB)
// DXT formats
DXT1_RGB, // DXT1 RGB (compressed)
DXT1_RGBA, // DXT1 RGBA (compressed)
DXT3_RGBA, // DXT3 RGBA (compressed)
DXT5_RGBA, // DXT5 RGBA (compressed)
DXT1_SRGB, // DXT1 sRGB (compressed)
DXT1_SRGBA, // DXT1 sRGBA (compressed)
DXT3_SRGBA, // DXT3 sRGBA (compressed)
DXT5_SRGBA, // DXT5 sRGBA (compressed)
// ASTC formats
RGBA_ASTC_4x4, // ASTC 4x4 RGBA (compressed)
RGBA_ASTC_5x4, // ASTC 5x4 RGBA (compressed)
RGBA_ASTC_5x5, // ASTC 5x5 RGBA (compressed)
RGBA_ASTC_6x5, // ASTC 6x5 RGBA (compressed)
RGBA_ASTC_6x6, // ASTC 6x6 RGBA (compressed)
RGBA_ASTC_8x5, // ASTC 8x5 RGBA (compressed)
RGBA_ASTC_8x6, // ASTC 8x6 RGBA (compressed)
RGBA_ASTC_8x8, // ASTC 8x8 RGBA (compressed)
RGBA_ASTC_10x5, // ASTC 10x5 RGBA (compressed)
RGBA_ASTC_10x6, // ASTC 10x6 RGBA (compressed)
RGBA_ASTC_10x8, // ASTC 10x8 RGBA (compressed)
RGBA_ASTC_10x10, // ASTC 10x10 RGBA (compressed)
RGBA_ASTC_12x10, // ASTC 12x10 RGBA (compressed)
RGBA_ASTC_12x12, // ASTC 12x12 RGBA (compressed)
SRGB8_ALPHA8_ASTC_4x4, // ASTC 4x4 sRGBA (compressed)
SRGB8_ALPHA8_ASTC_5x4, // ASTC 5x4 sRGBA (compressed)
SRGB8_ALPHA8_ASTC_5x5, // ASTC 5x5 sRGBA (compressed)
SRGB8_ALPHA8_ASTC_6x5, // ASTC 6x5 sRGBA (compressed)
SRGB8_ALPHA8_ASTC_6x6, // ASTC 6x6 sRGBA (compressed)
SRGB8_ALPHA8_ASTC_8x5, // ASTC 8x5 sRGBA (compressed)
SRGB8_ALPHA8_ASTC_8x6, // ASTC 8x6 sRGBA (compressed)
SRGB8_ALPHA8_ASTC_8x8, // ASTC 8x8 sRGBA (compressed)
SRGB8_ALPHA8_ASTC_10x5, // ASTC 10x5 sRGBA (compressed)
SRGB8_ALPHA8_ASTC_10x6, // ASTC 10x6 sRGBA (compressed)
SRGB8_ALPHA8_ASTC_10x8, // ASTC 10x8 sRGBA (compressed)
SRGB8_ALPHA8_ASTC_10x10, // ASTC 10x10 sRGBA (compressed)
SRGB8_ALPHA8_ASTC_12x10, // ASTC 12x10 sRGBA (compressed)
SRGB8_ALPHA8_ASTC_12x12, // ASTC 12x12 sRGBA (compressed)
// RGTC formats
RED_RGTC1, // BC4 unsigned
SIGNED_RED_RGTC1, // BC4 signed
RED_GREEN_RGTC2, // BC5 unsigned
SIGNED_RED_GREEN_RGTC2, // BC5 signed
// BPTC formats
RGB_BPTC_SIGNED_FLOAT, // BC6H signed
RGB_BPTC_UNSIGNED_FLOAT, // BC6H unsigned
RGBA_BPTC_UNORM, // BC7
SRGB_ALPHA_BPTC_UNORM, // BC7 sRGB
}
enum TextureUsage {
TEXTURE_USAGE_NONE(0),
/// !< Texture can be used as a color attachment
TEXTURE_USAGE_COLOR_ATTACHMENT(1),
/// !< Texture can be used as a depth attachment
TEXTURE_USAGE_DEPTH_ATTACHMENT(2),
/// !< Texture can be used as a stencil attachment
TEXTURE_USAGE_STENCIL_ATTACHMENT(4),
/// !< Data can be uploaded into this texture (default)
TEXTURE_USAGE_UPLOADABLE(8),
/// !< Texture can be sampled (default)
TEXTURE_USAGE_SAMPLEABLE(16),
/// !< Texture can be used as a subpass input
TEXTURE_USAGE_SUBPASS_INPUT(32),
/// !< Texture can be used the source of a blit()
TEXTURE_USAGE_BLIT_SRC(64),
/// !< Texture can be used the destination of a blit()
TEXTURE_USAGE_BLIT_DST(128),
/// !< Texture can be used the destination of a blit()
TEXTURE_USAGE_PROTECTED(256),
/// !< Default texture usage
TEXTURE_USAGE_DEFAULT(24);
final int value;
const TextureUsage(this.value);
static TextureUsage fromValue(int value) => switch (value) {
0 => TEXTURE_USAGE_NONE,
1 => TEXTURE_USAGE_COLOR_ATTACHMENT,
2 => TEXTURE_USAGE_DEPTH_ATTACHMENT,
4 => TEXTURE_USAGE_STENCIL_ATTACHMENT,
8 => TEXTURE_USAGE_UPLOADABLE,
16 => TEXTURE_USAGE_SAMPLEABLE,
32 => TEXTURE_USAGE_SUBPASS_INPUT,
64 => TEXTURE_USAGE_BLIT_SRC,
128 => TEXTURE_USAGE_BLIT_DST,
256 => TEXTURE_USAGE_PROTECTED,
24 => TEXTURE_USAGE_DEFAULT,
_ => throw ArgumentError("Unknown value for TTextureUsage: $value"),
};
}
/// Defines texture wrapping modes for texture coordinates
enum TextureWrapMode {
/// Clamps texture coordinates to edge, extending edge pixels
CLAMP_TO_EDGE,
/// Repeats the texture (tiles)
REPEAT,
/// Mirrors the texture at each repeat
MIRRORED_REPEAT
}
/// Defines texture minification filter types
enum TextureMinFilter {
/// Nearest neighbor sampling (pixelated look)
NEAREST,
/// Linear interpolation between texels
LINEAR,
/// Nearest neighbor filtering with nearest mipmap
NEAREST_MIPMAP_NEAREST,
/// Linear filtering with nearest mipmap
LINEAR_MIPMAP_NEAREST,
/// Nearest filtering with linear mipmap interpolation
NEAREST_MIPMAP_LINEAR,
/// Linear filtering with linear mipmap interpolation (best quality)
LINEAR_MIPMAP_LINEAR
}
/// Defines texture magnification filter types
enum TextureMagFilter {
/// Nearest neighbor sampling (pixelated look)
NEAREST,
/// Linear interpolation between texels
LINEAR
}
/// Defines texture comparison modes
enum TextureCompareMode {
/// No comparison is performed
NONE,
/// Compare texture values to reference value
COMPARE_TO_TEXTURE
}
/// Defines texture comparison functions
enum TextureCompareFunc {
/// Less than or equal
LESS_EQUAL,
/// Greater than or equal
GREATER_EQUAL,
/// Less than
LESS,
/// Greater than
GREATER,
/// Equal
EQUAL,
/// Not equal
NOT_EQUAL,
/// Always passes
ALWAYS,
/// Never passes
NEVER
}
/// Defines swizzle operations for texture components
enum TextureSwizzle {
/// Use the component as is
CHANNEL_0,
/// Use the red channel
CHANNEL_R,
/// Use the green channel
CHANNEL_G,
/// Use the blue channel
CHANNEL_B,
/// Use the alpha channel
CHANNEL_A,
/// Use value 0
ZERO,
/// Use value 1
ONE
}
/// Defines the texture sampler configuration
abstract class TextureSampler {
/// Disposes the sampler resources
Future dispose();
}
/// Defines a texture object
abstract class Texture {
/// Returns the width of the texture at the specified mipmap level
Future<int> getWidth([int level = 0]);
/// Returns the height of the texture at the specified mipmap level
Future<int> getHeight([int level = 0]);
/// Returns the depth of the texture at the specified mipmap level (for 3D textures)
Future<int> getDepth([int level = 0]);
/// Returns the number of mipmap levels this texture has
Future<int> getLevels();
/// Returns the sampler type of this texture
Future<TextureSamplerType> getTarget();
/// Returns the internal format of this texture
Future<TextureFormat> getFormat();
Future setLinearImage(
covariant LinearImage image, PixelDataFormat format, PixelDataType type);
/// Sets the image data for a 2D texture or a texture level
Future setImage(int level, Uint8List buffer, int width, int height,
int channels, PixelDataFormat format, PixelDataType type);
/// Sets the image data for a region of a 2D texture
Future setSubImage(int level, int xOffset, int yOffset, int width, int height,
Uint8List buffer, PixelDataFormat format, PixelDataType type);
/// Sets the image data for a 3D texture or cubemap
Future setImage3D(
int level,
int xOffset,
int yOffset,
int zOffset,
int width,
int height,
int channels,
int depth,
Uint8List buffer,
PixelDataFormat format,
PixelDataType type);
/// Sets an external image (like a video or camera frame) as the texture source
Future setExternalImage(dynamic externalImage);
/// Generates mipmaps automatically for the texture
Future generateMipmaps();
/// Disposes the texture resources
Future dispose();
}
enum PixelDataFormat {
R,
/// One Red channel, float
R_INTEGER,
/// One Red channel, integer
RG,
/// Two Red and Green channels, float
RG_INTEGER,
/// Two Red and Green channels, integer
RGB,
/// Three Red, Green and Blue channels, float
RGB_INTEGER,
/// Three Red, Green and Blue channels, integer
RGBA,
/// Four Red, Green, Blue and Alpha channels, float
RGBA_INTEGER,
/// Four Red, Green, Blue and Alpha channels, integer
UNUSED,
/// Used to be rgbm
DEPTH_COMPONENT,
/// Depth, 16-bit or 24-bits usually
DEPTH_STENCIL,
/// Two Depth (24-bits) + Stencil (8-bits) channels
ALPHA
/// One Alpha channel, float
}
/// Pixel Data Type
enum PixelDataType {
UBYTE,
/// Unsigned byte
BYTE,
/// Signed byte
USHORT,
/// Unsigned short (16-bit)
SHORT,
/// Signed short (16-bit)
UINT,
/// Unsigned int (32-bit)
INT,
/// Signed int (32-bit)
HALF,
/// Half-float (16-bit float)
FLOAT,
/// Float (32-bits float)
COMPRESSED,
/// Compressed pixels, see CompressedPixelDataType
UINT_10F_11F_11F_REV,
/// Three low precision floating-point numbers
USHORT_565,
/// Unsigned int (16-bit), encodes 3 RGB channels
UINT_2_10_10_10_REV,
/// Unsigned normalized 10 bits RGB, 2 bits alpha
}
@deprecated
typedef ThermionTexture = Texture;
abstract class LinearImage {
Future destroy();
Future<Float32List> getData();
Future<int> getWidth();
Future<int> getHeight();
Future<int> getChannels();
}

View File

@@ -1,14 +0,0 @@
///
/// This represents the backing "surface" that we render into.
/// "Texture" here is a misnomer as it is only a render target texture on certain platforms.
///
class TextureDetails {
final int textureId;
// both width and height are in physical, not logical pixels
final int width;
final int height;
TextureDetails(
{required this.textureId, required this.width, required this.height});
}

View File

@@ -1 +0,0 @@
enum ToneMapper { ACES, FILMIC, LINEAR }

View File

@@ -1,39 +0,0 @@
import 'package:thermion_dart/src/viewer/src/shared_types/layers.dart';
import 'package:thermion_dart/thermion_dart.dart';
///
/// The viewport currently attached to a [View].
///
/// The dimensions here are guaranteed to be in physical pixels.
///
class Viewport {
final int left;
final int bottom;
final int width;
final int height;
Viewport(this.left, this.bottom, this.width, this.height);
}
enum QualityLevel { LOW, MEDIUM, HIGH, ULTRA }
abstract class View {
Future<Viewport> getViewport();
Future setViewport(int width, int height);
Future<RenderTarget?> getRenderTarget();
Future setRenderTarget(covariant RenderTarget? renderTarget);
Future setCamera(covariant Camera camera);
Future<Camera> getCamera();
Future setPostProcessing(bool enabled);
Future setAntiAliasing(bool msaa, bool fxaa, bool taa);
Future setRenderable(bool renderable, covariant SwapChain swapChain);
Future setFrustumCullingEnabled(bool enabled);
Future setToneMapper(ToneMapper mapper);
Future setStencilBufferEnabled(bool enabled);
Future<bool> isStencilBufferEnabled();
Future setDithering(bool enabled);
Future<bool> isDitheringEnabled();
Future setBloom(bool enabled, double strength);
Future setRenderQuality(QualityLevel quality);
Future setLayerVisibility(VisibilityLayers layer, bool visible);
}

View File

@@ -1,23 +1,28 @@
import 'package:thermion_dart/src/viewer/src/shared_types/layers.dart';
import '../../utils/src/gizmo.dart';
import 'shared_types/shared_types.dart';
export 'shared_types/shared_types.dart';
import 'dart:math';
import 'package:thermion_dart/src/filament/src/filament_app.dart';
import '../../filament/src/shared_types.dart';
import 'dart:typed_data';
import 'package:vector_math/vector_math_64.dart';
import 'dart:async';
import 'package:animation_tools_dart/animation_tools_dart.dart';
///
/// A high-level interface for interacting with a 3D scene.
/// This broadly maps to a single scene/view
/// A (high-level) interface for a 3D scene.
///
/// Use this to add/remove assets, lights and cameras.
///
/// Multiple instances can be created; each will correspond
/// broadly to a single Filament Scene/View.
///
/// If you know yhat you are doing, you can use a lower level interface by
/// using the methods directly via FilamentApp.instance;
///
abstract class ThermionViewer {
///
/// Whether the controller is currently rendering at [framerate].
///
///
View get view;
///
/// If [true], this Viewer should render itself
///
bool get rendering;
@@ -31,29 +36,6 @@ abstract class ThermionViewer {
///
Future render();
///
/// Requests a single frame to be rendered. This is only intended to be used internally.
///
Future requestFrame();
///
/// Render a single frame and return the captured image as a pixel buffer.
///
Future<List<Uint8List>> capture(
covariant List<
({View view, SwapChain? swapChain, RenderTarget? renderTarget})>
targets);
///
///
///
Future<View> createView();
///
///
///
Future<View> getViewAt(int index);
///
///
///
@@ -119,32 +101,6 @@ abstract class ThermionViewer {
///
Future removeIbl();
///
/// Add a light to the scene.
/// See LightManager.h for details
/// Note that [sunAngularRadius] is in degrees,
/// whereas [spotLightConeInner] and [spotLightConeOuter] are in radians
///
@Deprecated(
"This will be removed in future versions. Use addDirectLight instead.")
Future<ThermionEntity> addLight(
LightType type,
double colour,
double intensity,
double posX,
double posY,
double posZ,
double dirX,
double dirY,
double dirZ,
{double falloffRadius = 1.0,
double spotLightConeInner = pi / 8,
double spotLightConeOuter = pi / 4,
double sunAngularRadius = 0.545,
double sunHaloSize = 10.0,
double sunHaloFallof = 80.0,
bool castShadows = true});
///
/// Adds a direct light to the scene.
/// See LightManager.h for details
@@ -198,139 +154,6 @@ abstract class ThermionViewer {
Future<ThermionAsset> loadGltf(String path, String relativeResourcePath,
{bool keepData = false});
///
/// Set the weights for all morph targets in [entity] to [weights].
/// Note that [weights] must contain values for ALL morph targets, but no exception will be thrown if you don't do so (you'll just get incorrect results).
/// If you only want to set one value, set all others to zero (check [getMorphTargetNames] if you need the get a list of all morph targets).
/// IMPORTANT - this accepts the actual ThermionEntity with the relevant morph targets (unlike [getMorphTargetNames], which uses the parent entity and the child mesh name).
/// Use [getChildEntityByName] if you are setting the weights for a child mesh.
///
Future setMorphTargetWeights(ThermionEntity entity, List<double> weights);
///
/// Gets the names of all morph targets for the child renderable [childEntity] under [entity].
///
Future<List<String>> getMorphTargetNames(
covariant ThermionAsset asset, ThermionEntity childEntity);
///
/// Gets the names of all bones for the armature at [skinIndex] under the specified [entity].
///
Future<List<String>> getBoneNames(covariant ThermionAsset asset,
{int skinIndex = 0});
///
/// Gets the names of all glTF animations embedded in the specified entity.
///
Future<List<String>> getAnimationNames(covariant ThermionAsset asset);
///
/// Returns the length (in seconds) of the animation at the given index.
///
Future<double> getAnimationDuration(
covariant ThermionAsset asset, int animationIndex);
///
/// Construct animation(s) for every entity under [asset]. If [targetMeshNames] is provided, only entities with matching names will be animated.
/// [MorphTargetAnimation] for an explanation as to how to construct the animation frame data.
/// This method will check the morph target names specified in [animation] against the morph target names that actually exist exist under [meshName] in [entity],
/// throwing an exception if any cannot be found.
/// It is permissible for [animation] to omit any targets that do exist under [meshName]; these simply won't be animated.
///
Future setMorphAnimationData(
covariant ThermionAsset asset, MorphAnimationData animation,
{List<String>? targetMeshNames});
///
/// Clear all current morph animations for [entity].
///
Future clearMorphAnimationData(ThermionEntity entity);
///
/// Resets all bones in the given entity to their rest pose.
/// This should be done before every call to addBoneAnimation.
///
Future resetBones(ThermionAsset asset);
///
/// Enqueues and plays the [animation] for the specified bone(s).
/// By default, frame data is interpreted as being in *parent* bone space;
/// a 45 degree around Y means the bone will rotate 45 degrees around the
/// Y axis of the parent bone *in its current orientation*.
/// (i.e NOT the parent bone's rest position!).
/// Currently, only [Space.ParentBone] and [Space.Model] are supported; if you want
/// to transform to another space, you will need to do so manually.
///
/// [fadeInInSecs]/[fadeOutInSecs]/[maxDelta] are used to cross-fade between
/// the current active glTF animation ("animation1") and the animation you
/// set via this method ("animation2"). The bone orientations will be
/// linearly interpolated between animation1 and animation2; at time 0,
/// the orientation will be 100% animation1, at time [fadeInInSecs], the
/// animation will be ((1 - maxDelta) * animation1) + (maxDelta * animation2).
/// This will be applied in reverse after [fadeOutInSecs].
///
///
Future addBoneAnimation(ThermionAsset asset, BoneAnimationData animation,
{int skinIndex = 0,
double fadeInInSecs = 0.0,
double fadeOutInSecs = 0.0,
double maxDelta = 1.0});
///
/// Gets the entity representing the bone at [boneIndex]/[skinIndex].
/// The returned entity is only intended for use with [getWorldTransform].
///
Future<ThermionEntity> getBone(covariant ThermionAsset asset, int boneIndex,
{int skinIndex = 0});
///
/// Gets the local (relative to parent) transform for [entity].
///
Future<Matrix4> getLocalTransform(ThermionEntity entity);
///
/// Gets the world transform for [entity].
///
Future<Matrix4> getWorldTransform(ThermionEntity entity);
///
/// Gets the inverse bind (pose) matrix for the bone.
/// Note that [parent] must be the ThermionEntity returned by [loadGlb/loadGltf], not any other method ([getChildEntity] etc).
/// This is because all joint information is internally stored with the parent entity.
///
Future<Matrix4> getInverseBindMatrix(
covariant ThermionAsset asset, int boneIndex,
{int skinIndex = 0});
///
/// Sets the transform (relative to its parent) for [entity].
///
Future setTransform(ThermionEntity entity, Matrix4 transform);
///
/// Sets multiple transforms (relative to parent) simultaneously for [entity].
/// Uses mutex to ensure that transform updates aren't split across frames.
///
Future queueTransformUpdates(
List<ThermionEntity> entities, List<Matrix4> transforms);
///
/// Updates the bone matrices for [entity] (which must be the ThermionEntity
/// returned by [loadGlb/loadGltf]).
/// Under the hood, this just calls [updateBoneMatrices] on the Animator
/// instance of the relevant FilamentInstance (which uses the local
/// bone transform and the inverse bind matrix to set the bone matrix).
///
Future updateBoneMatrices(ThermionEntity entity);
///
/// Directly set the bone matrix for the bone at the given index.
/// Don't call this manually unless you know what you're doing.
///
Future setBoneTransform(
ThermionEntity entity, int boneIndex, Matrix4 transform,
{int skinIndex = 0});
///
/// Destroys [asset] and all underlying resources
/// (including instances, but excluding any manually created material instances).
@@ -343,72 +166,6 @@ abstract class ThermionViewer {
///
Future destroyAssets();
///
/// Schedules the glTF animation at [index] in [asset] to start playing on the next frame.
///
Future playAnimation(ThermionAsset asset, int index,
{bool loop = false,
bool reverse = false,
bool replaceActive = true,
double crossfade = 0.0,
double startOffset = 0.0});
///
/// Schedules the glTF animation at [index] in [entity] to start playing on the next frame.
///
Future playAnimationByName(covariant ThermionAsset asset, String name,
{bool loop = false,
bool reverse = false,
bool replaceActive = true,
double crossfade = 0.0});
///
///
///
Future setGltfAnimationFrame(
covariant ThermionAsset asset, int index, int animationFrame);
///
///
///
Future stopAnimation(covariant ThermionAsset asset, int animationIndex);
///
///
///
Future stopAnimationByName(covariant ThermionAsset asset, String name);
///
/// Sets the current scene camera to the glTF camera under [name] in [entity].
///
Future setCamera(ThermionEntity entity, String? name);
///
/// Sets the current scene camera to the main camera (which is always available and added to every scene by default).
///
Future setMainCamera();
///
/// Returns the entity associated with the main camera. You probably never need this; use getMainCamera instead.
///
Future<ThermionEntity> getMainCameraEntity();
///
/// Returns the Camera instance for the main camera.
///
Future<Camera> getMainCamera();
///
/// Sets the horizontal field of view (if [horizontal] is true) or vertical field of view for the currently active camera to [degrees].
/// The aspect ratio of the current viewport is used.
///
Future setCameraFov(double degrees, {bool horizontal = true});
///
/// Gets the field of view (in degrees).
///
Future<double> getCameraFov(bool horizontal);
///
/// Sets the tone mapping (requires postprocessing).
///
@@ -419,115 +176,11 @@ abstract class ThermionViewer {
///
Future setBloom(bool enabled, double strength);
///
/// Sets the focal length of the camera. Default value is 28.0.
///
Future setCameraFocalLength(double focalLength);
///
/// Sets the distance (in world units) to the near/far planes for the active camera. Default values are 0.05/1000.0. See Camera.h for details.
///
Future setCameraCulling(double near, double far);
///
/// Get the distance (in world units) to the near plane for the active camera.
///
@Deprecated("Use getCameraNear")
Future<double> getCameraCullingNear();
///
/// Get the distance (in world units) to the near plane for the active camera.
///
Future<double> getCameraNear();
///
/// Get the distance (in world units) to the far culling plane for the active camera.
///
Future<double> getCameraCullingFar();
///
/// Sets the focus distance for the camera.
///
Future setCameraFocusDistance(double focusDistance);
///
/// Get the camera position in world space.
///
Future<Vector3> getCameraPosition();
///
/// Get the camera's model matrix.
///
Future<Matrix4> getCameraModelMatrix();
///
/// Get the camera's view matrix. See Camera.h for more details.
///
Future<Matrix4> getCameraViewMatrix();
///
/// Get the camera's projection matrix. See Camera.h for more details.
///
Future<Matrix4> getCameraProjectionMatrix();
///
/// Get the camera's culling projection matrix. See Camera.h for more details.
///
Future<Matrix4> getCameraCullingProjectionMatrix();
///
/// Get the camera's culling frustum in world space. Returns a (vector_math) [Frustum] instance where plane0-plane6 define the left, right, bottom, top, far and near planes respectively.
/// See Camera.h and (filament) Frustum.h for more details.
///
Future<Frustum> getCameraFrustum();
///
/// Set the camera position in world space. Note this is not persistent - any viewport navigation will reset the camera transform.
///
Future setCameraPosition(double x, double y, double z);
///
/// Get the camera rotation matrix.
///
Future<Matrix3> getCameraRotation();
///
/// Repositions the camera to the last vertex of the bounding box of [entity], looking at the penultimate vertex.
///
Future moveCameraToAsset(ThermionEntity entity);
///
/// Enables/disables frustum culling.
///
Future setViewFrustumCulling(bool enabled);
///
/// Sets the camera exposure.
///
Future setCameraExposure(
double aperture, double shutterSpeed, double sensitivity);
///
/// Rotate the camera by [rads] around the given axis.
///
Future setCameraRotation(Quaternion quaternion);
///
/// Sets the camera model matrix.
///
@Deprecated("Will be superseded by setCameraModelMatrix4")
Future setCameraModelMatrix(List<double> matrix);
///
/// Sets the camera model matrix.
///
Future setCameraModelMatrix4(Matrix4 matrix);
///
/// Scale [entity] to fit within the unit cube.
///
Future transformToUnitCube(ThermionEntity entity);
///
/// Set the world space position for [lightEntity] to the given coordinates.
///
@@ -539,18 +192,6 @@ abstract class ThermionViewer {
///
Future setLightDirection(ThermionEntity lightEntity, Vector3 direction);
///
/// TODO
///
Future queuePositionUpdateFromViewportCoords(
ThermionEntity entity, double x, double y);
///
/// TODO
///
Future queueRelativePositionUpdateWorldAxis(ThermionEntity entity,
double viewportX, double viewportY, double x, double y, double z);
///
/// Enable/disable postprocessing effects (anti-aliasing, tone mapping, bloom). Disabled by default.
///
@@ -576,16 +217,6 @@ abstract class ThermionViewer {
///
Future setAntiAliasing(bool msaa, bool fxaa, bool taa);
///
/// Adds a single [entity] to the scene.
///
Future addEntityToScene(ThermionEntity entity);
///
/// Removes a single [entity] from the scene.
///
Future removeAssetFromScene(ThermionEntity entity);
///
/// Hit test the viewport at the given coordinates. If the coordinates intersect
/// with a renderable entity, [resultHandler] will be called.
@@ -599,37 +230,6 @@ abstract class ThermionViewer {
///
String? getNameForEntity(ThermionEntity entity);
///
/// Returns all child entities under [asset].
///
Future<List<ThermionEntity>> getChildEntities(covariant ThermionAsset asset);
///
/// Finds the child entity named [childName] associated with the given parent.
/// Usually, [parent] will be the return value from [loadGlb]/[loadGltf] and [childName] will be the name of a node/mesh.
///
Future<ThermionEntity?> getChildEntity(
covariant ThermionAsset asset, String childName);
///
/// An [entity] will only be animatable after an animation component is attached.
/// Any calls to [playAnimation]/[setBoneAnimation]/[setMorphAnimation] will have no visual effect until [addAnimationComponent] has been called on the instance.
///
Future addAnimationComponent(ThermionEntity entity);
///
/// Removes an animation component from [entity].
///
Future removeAnimationComponent(ThermionEntity entity);
///
/// Creates a (renderable) entity with the specified geometry and adds to the scene.
/// If [keepData] is true, the source data will not be released.
///
Future<ThermionAsset> createGeometry(Geometry geometry,
{covariant List<MaterialInstance>? materialInstances,
bool keepData = false});
///
/// Gets the parent entity of [entity]. Returns null if the entity has no parent.
///
@@ -672,131 +272,15 @@ abstract class ThermionViewer {
Future<Aabb2> getViewportBoundingBox(ThermionEntity entity);
///
/// Toggles the visibility of the respective layer.
///
Future setLayerVisibility(VisibilityLayers layer, bool visible);
///
/// All renderable entities are assigned a layer mask.
///
/// By calling [setLayerVisibility], all renderable entities allocated to
/// the given layer can be efficiently hidden/revealed.
///
/// By default, all renderable entities are assigned to layer 0 (and this
/// layer is enabled by default). Call [setVisibilityLayer] to change the
/// layer for the specified entity.
///
/// Note that we currently also assign gizmos to layer 1 (enabled by default)
/// and the world grid to layer 2 (disabled by default). We suggest you avoid
/// using these layers.
///
Future setVisibilityLayer(ThermionEntity entity, VisibilityLayers layer);
///
///
///
Future showGridOverlay({covariant Material? material});
Future showGridOverlay();
///
///
///
Future removeGridOverlay();
///
///
///
Future<Texture> createTexture(int width, int height,
{int depth = 1,
int levels = 1,
TextureSamplerType textureSamplerType = TextureSamplerType.SAMPLER_2D,
TextureFormat textureFormat = TextureFormat.RGBA32F});
///
///
///
Future<TextureSampler> createTextureSampler(
{TextureMinFilter minFilter = TextureMinFilter.LINEAR,
TextureMagFilter magFilter = TextureMagFilter.LINEAR,
TextureWrapMode wrapS = TextureWrapMode.CLAMP_TO_EDGE,
TextureWrapMode wrapT = TextureWrapMode.CLAMP_TO_EDGE,
TextureWrapMode wrapR = TextureWrapMode.CLAMP_TO_EDGE,
double anisotropy = 0.0,
TextureCompareMode compareMode = TextureCompareMode.NONE,
TextureCompareFunc compareFunc = TextureCompareFunc.LESS_EQUAL});
///
/// Decodes the specified image data.
///
Future<LinearImage> decodeImage(Uint8List data);
///
/// Creates an (empty) imge with the given dimensions.
///
Future<LinearImage> createImage(int width, int height, int channels);
///
///
///
Future<Material> createMaterial(Uint8List data);
///
///
///
Future<MaterialInstance> createUbershaderMaterialInstance({
bool doubleSided = false,
bool unlit = false,
bool hasVertexColors = false,
bool hasBaseColorTexture = false,
bool hasNormalTexture = false,
bool hasOcclusionTexture = false,
bool hasEmissiveTexture = false,
bool useSpecularGlossiness = false,
AlphaMode alphaMode = AlphaMode.OPAQUE,
bool enableDiagnostics = false,
bool hasMetallicRoughnessTexture = false,
int metallicRoughnessUV = -1,
int baseColorUV = -1,
bool hasClearCoatTexture = false,
int clearCoatUV = -1,
bool hasClearCoatRoughnessTexture = false,
int clearCoatRoughnessUV = -1,
bool hasClearCoatNormalTexture = false,
int clearCoatNormalUV = -1,
bool hasClearCoat = false,
bool hasTransmission = false,
bool hasTextureTransforms = false,
int emissiveUV = -1,
int aoUV = -1,
int normalUV = -1,
bool hasTransmissionTexture = false,
int transmissionUV = -1,
bool hasSheenColorTexture = false,
int sheenColorUV = -1,
bool hasSheenRoughnessTexture = false,
int sheenRoughnessUV = -1,
bool hasVolumeThicknessTexture = false,
int volumeThicknessUV = -1,
bool hasSheen = false,
bool hasIOR = false,
bool hasVolume = false,
});
///
///
///
Future destroyMaterialInstance(covariant MaterialInstance materialInstance);
///
///
///
Future<MaterialInstance> createUnlitMaterialInstance();
///
///
///
Future<MaterialInstance> getMaterialInstanceAt(
ThermionEntity entity, int index);
///
///
///
@@ -817,52 +301,8 @@ abstract class ThermionViewer {
///
Future<Camera> getActiveCamera();
///
///
///
Future registerRequestFrameHook(Future Function() hook);
///
///
///
Future unregisterRequestFrameHook(Future Function() hook);
///
///
///
int getCameraCount();
///
/// Returns the camera specified by the given index. Note that the camera at
/// index 0 is always the main camera; this cannot be destroyed.
///
/// Throws an exception if the index is out-of-bounds.
///
Camera getCameraAt(int index);
///
///
///
Future setCastShadows(ThermionEntity entity, bool castShadows);
///
///
///
Future<bool> isCastShadowsEnabled(ThermionEntity entity);
///
///
///
Future setReceiveShadows(ThermionEntity entity, bool receiveShadows);
///
///
///
Future<bool> isReceiveShadowsEnabled(ThermionEntity entity);
///
///
///
Future setClearOptions(
Vector4 clearColor, int clearStencil, bool clear, bool discard);
}

File diff suppressed because it is too large Load Diff

View File

@@ -3,7 +3,7 @@ library thermion_flutter_js;
import 'dart:js_interop';
import '../../shared_types/shared_types.dart';
import '../../../../filament/src/shared_types.dart';
///
/// An extension type on [JSObject] that represents a

View File

@@ -1,7 +1,9 @@
library thermion_viewer;
export 'src/thermion_viewer_base.dart';
export '../filament/src/filament_app.dart';
export 'src/thermion_viewer_stub.dart'
if (dart.library.io) 'src/ffi/thermion_viewer_ffi.dart'
if (dart.library.js_interop) 'src/web_wasm/thermion_viewer_web_wasm.dart';
export 'src/shared_types/shared_types.dart';
export '../filament/src/shared_types.dart';