feat: re-implement (native) Gizmo class, expose preserveScaling parameter for setParent, add methods for getting viewport bounding box from renderable entity

This commit is contained in:
Nick Fisher
2024-08-22 18:04:06 +08:00
parent 98c3676fdf
commit 7693a0fe14
15 changed files with 769 additions and 347 deletions

View File

@@ -9,6 +9,7 @@
#include <filament/TransformManager.h>
#include <filament/Texture.h>
#include <filament/RenderableManager.h>
#include <filament/Viewport.h>
#include <utils/EntityManager.h>
@@ -43,11 +44,13 @@ namespace thermion_filament
using namespace filament::gltfio;
using std::unique_ptr;
SceneManager::SceneManager(const ResourceLoaderWrapperImpl *const resourceLoaderWrapper,
SceneManager::SceneManager(View *view,
const ResourceLoaderWrapperImpl *const resourceLoaderWrapper,
Engine *engine,
Scene *scene,
const char *uberArchivePath)
: _resourceLoaderWrapper(resourceLoaderWrapper),
: _view(view),
_resourceLoaderWrapper(resourceLoaderWrapper),
_engine(engine),
_scene(scene)
{
@@ -76,9 +79,9 @@ namespace thermion_filament
utils::EntityManager &em = utils::EntityManager::get();
_ncm = new NameComponentManager(em);
_assetLoader = AssetLoader::create({_engine, _ubershaderProvider, _ncm, &em});
_gltfResourceLoader->addTextureProvider("image/ktx2", _ktxDecoder);
_gltfResourceLoader->addTextureProvider("image/png", _stbDecoder);
_gltfResourceLoader->addTextureProvider("image/jpeg", _stbDecoder);
@@ -87,24 +90,20 @@ namespace thermion_filament
_collisionComponentManager = new CollisionComponentManager(tm);
_animationComponentManager = new AnimationComponentManager(tm, _engine->getRenderableManager());
addGizmo();
_gizmo = new Gizmo(_engine);
}
SceneManager::~SceneManager()
{
destroyAll();
for(int i =0; i < 3; i++) {
_engine->destroy(_gizmo[i]);
_engine->destroy(_gizmoMaterialInstances[i]);
}
_engine->destroy(_gizmoMaterial);
_gizmo->destroy(_engine);
_gltfResourceLoader->asyncCancelLoad();
_ubershaderProvider->destroyMaterials();
delete _animationComponentManager;
delete _collisionComponentManager;
delete _ncm;
@@ -114,7 +113,6 @@ namespace thermion_filament
delete _ktxDecoder;
delete _ubershaderProvider;
AssetLoader::destroy(&_assetLoader);
}
int SceneManager::getInstanceCount(EntityId entityId)
@@ -454,7 +452,8 @@ namespace thermion_filament
for (auto &asset : _assets)
{
auto numInstances = asset.second->getAssetInstanceCount();
for(int i = 0; i < numInstances; i++) {
for (int i = 0; i < numInstances; i++)
{
auto instance = asset.second->getAssetInstances()[i];
for (int j = 0; j < instance->getEntityCount(); j++)
{
@@ -499,21 +498,24 @@ namespace thermion_filament
return pos->second;
}
math::mat4f SceneManager::getLocalTransform(EntityId entityId) {
math::mat4f SceneManager::getLocalTransform(EntityId entityId)
{
auto entity = Entity::import(entityId);
auto& tm = _engine->getTransformManager();
auto transformInstance = tm.getInstance(entity);
auto &tm = _engine->getTransformManager();
auto transformInstance = tm.getInstance(entity);
return tm.getTransform(transformInstance);
}
math::mat4f SceneManager::getWorldTransform(EntityId entityId) {
math::mat4f SceneManager::getWorldTransform(EntityId entityId)
{
auto entity = Entity::import(entityId);
auto& tm = _engine->getTransformManager();
auto transformInstance = tm.getInstance(entity);
auto &tm = _engine->getTransformManager();
auto transformInstance = tm.getInstance(entity);
return tm.getWorldTransform(transformInstance);
}
EntityId SceneManager::getBone(EntityId entityId, int skinIndex, int boneIndex) {
EntityId SceneManager::getBone(EntityId entityId, int skinIndex, int boneIndex)
{
auto *instance = getInstanceByEntityId(entityId);
if (!instance)
{
@@ -533,7 +535,8 @@ namespace thermion_filament
return Entity::smuggle(joint);
}
math::mat4f SceneManager::getInverseBindMatrix(EntityId entityId, int skinIndex, int boneIndex) {
math::mat4f SceneManager::getInverseBindMatrix(EntityId entityId, int skinIndex, int boneIndex)
{
auto *instance = getInstanceByEntityId(entityId);
if (!instance)
{
@@ -552,7 +555,6 @@ namespace thermion_filament
return inverseBindMatrix;
}
bool SceneManager::setBoneTransform(EntityId entityId, int32_t skinIndex, int boneIndex, math::mat4f transform)
{
std::lock_guard lock(_mutex);
@@ -781,7 +783,7 @@ namespace thermion_filament
return true;
}
void SceneManager::clearMorphAnimationBuffer(
void SceneManager::clearMorphAnimationBuffer(
EntityId entityId)
{
std::lock_guard lock(_mutex);
@@ -865,12 +867,12 @@ namespace thermion_filament
TransformManager &transformManager = _engine->getTransformManager();
//
// To reset the skeleton to its rest pose, we could just call animator->resetBoneMatrices(),
// which sets all bone matrices to the identity matrix. However, any subsequent calls to animator->updateBoneMatrices()
// may result in unexpected poses, because that method uses each bone's transform to calculate
// To reset the skeleton to its rest pose, we could just call animator->resetBoneMatrices(),
// which sets all bone matrices to the identity matrix. However, any subsequent calls to animator->updateBoneMatrices()
// may result in unexpected poses, because that method uses each bone's transform to calculate
// the bone matrices (and resetBoneMatrices does not affect this transform).
// To "fully" reset the bone, we need to set its local transform (i.e. relative to its parent)
// to its original orientation in rest pose.
// to its original orientation in rest pose.
//
// This can be calculated as:
//
@@ -879,7 +881,7 @@ namespace thermion_filament
// (where bindMatrix is the inverse of the inverseBindMatrix).
//
// The only requirement is that parent bone transforms are reset before child bone transforms.
// glTF/Filament does not guarantee that parent bones are listed before child bones under a FilamentInstance.
// glTF/Filament does not guarantee that parent bones are listed before child bones under a FilamentInstance.
// We ensure that parents are reset before children by:
// - pushing all bones onto a stack
// - iterate over the stack
@@ -891,16 +893,16 @@ namespace thermion_filament
// - pop the bone, reset its transform and mark it as completed
for (int skinIndex = 0; skinIndex < skinCount; skinIndex++)
{
std::unordered_set<Entity,Entity::Hasher> joints;
std::unordered_set<Entity,Entity::Hasher> completed;
std::unordered_set<Entity, Entity::Hasher> joints;
std::unordered_set<Entity, Entity::Hasher> completed;
std::stack<Entity> stack;
auto transforms = getBoneRestTranforms(entityId, skinIndex);
for (int i = 0; i < instance->getJointCountAt(skinIndex); i++)
{
auto restTransform = transforms->at(i);
const auto& joint = instance->getJointsAt(skinIndex)[i];
const auto &joint = instance->getJointsAt(skinIndex)[i];
auto transformInstance = transformManager.getInstance(joint);
transformManager.setTransform(transformInstance, restTransform);
}
@@ -908,7 +910,8 @@ namespace thermion_filament
instance->getAnimator()->updateBoneMatrices();
}
std::unique_ptr<std::vector<math::mat4f>> SceneManager::getBoneRestTranforms(EntityId entityId, int skinIndex) {
std::unique_ptr<std::vector<math::mat4f>> SceneManager::getBoneRestTranforms(EntityId entityId, int skinIndex)
{
auto transforms = std::make_unique<std::vector<math::mat4f>>();
@@ -933,12 +936,12 @@ namespace thermion_filament
transforms->resize(instance->getJointCountAt(skinIndex));
//
// To reset the skeleton to its rest pose, we could just call animator->resetBoneMatrices(),
// which sets all bone matrices to the identity matrix. However, any subsequent calls to animator->updateBoneMatrices()
// may result in unexpected poses, because that method uses each bone's transform to calculate
// To reset the skeleton to its rest pose, we could just call animator->resetBoneMatrices(),
// which sets all bone matrices to the identity matrix. However, any subsequent calls to animator->updateBoneMatrices()
// may result in unexpected poses, because that method uses each bone's transform to calculate
// the bone matrices (and resetBoneMatrices does not affect this transform).
// To "fully" reset the bone, we need to set its local transform (i.e. relative to its parent)
// to its original orientation in rest pose.
// to its original orientation in rest pose.
//
// This can be calculated as:
//
@@ -947,7 +950,7 @@ namespace thermion_filament
// (where bindMatrix is the inverse of the inverseBindMatrix).
//
// The only requirement is that parent bone transforms are reset before child bone transforms.
// glTF/Filament does not guarantee that parent bones are listed before child bones under a FilamentInstance.
// glTF/Filament does not guarantee that parent bones are listed before child bones under a FilamentInstance.
// We ensure that parents are reset before children by:
// - pushing all bones onto a stack
// - iterate over the stack
@@ -958,22 +961,23 @@ namespace thermion_filament
// - otherwise
// - pop the bone, reset its transform and mark it as completed
std::vector<Entity> joints;
std::unordered_set<Entity,Entity::Hasher> completed;
std::unordered_set<Entity, Entity::Hasher> completed;
std::stack<Entity> stack;
for (int i = 0; i < instance->getJointCountAt(skinIndex); i++)
{
const auto& joint = instance->getJointsAt(skinIndex)[i];
const auto &joint = instance->getJointsAt(skinIndex)[i];
joints.push_back(joint);
stack.push(joint);
}
while(!stack.empty())
while (!stack.empty())
{
const auto& joint = stack.top();
const auto &joint = stack.top();
// if we've already handled this node previously (e.g. when we encountered it as a parent), then skip
if(completed.find(joint) != completed.end()) {
if (completed.find(joint) != completed.end())
{
stack.pop();
continue;
}
@@ -981,23 +985,25 @@ namespace thermion_filament
const auto transformInstance = transformManager.getInstance(joint);
auto parent = transformManager.getParent(transformInstance);
// we need to handle parent joints before handling their children
// therefore, if this joint has a parent that hasn't been handled yet,
// we need to handle parent joints before handling their children
// therefore, if this joint has a parent that hasn't been handled yet,
// push the parent to the top of the stack and start the loop again
const auto& jointIter = std::find(joints.begin(), joints.end(), joint);
const auto &jointIter = std::find(joints.begin(), joints.end(), joint);
auto parentIter = std::find(joints.begin(), joints.end(), parent);
if(parentIter != joints.end() && completed.find(parent) == completed.end()) {
if (parentIter != joints.end() && completed.find(parent) == completed.end())
{
stack.push(parent);
continue;
}
// otherwise let's get the inverse bind matrix for the joint
// otherwise let's get the inverse bind matrix for the joint
math::mat4f inverseBindMatrix;
bool found = false;
for (int i = 0; i < instance->getJointCountAt(skinIndex); i++)
{
if(instance->getJointsAt(skinIndex)[i] == joint) {
if (instance->getJointsAt(skinIndex)[i] == joint)
{
inverseBindMatrix = instance->getInverseBindMatricesAt(skinIndex)[i];
found = true;
break;
@@ -1007,7 +1013,8 @@ namespace thermion_filament
// now we need to ascend back up the hierarchy to calculate the modelSpaceTransform
math::mat4f modelSpaceTransform;
while(parentIter != joints.end()) {
while (parentIter != joints.end())
{
const auto transformInstance = transformManager.getInstance(parent);
const auto parentIndex = distance(joints.begin(), parentIter);
const auto transform = transforms->at(parentIndex);
@@ -1016,9 +1023,9 @@ namespace thermion_filament
parentIter = std::find(joints.begin(), joints.end(), parent);
}
const auto bindMatrix = inverse(inverseBindMatrix);
const auto inverseModelSpaceTransform = inverse(modelSpaceTransform);
const auto bindMatrix = inverse(inverseBindMatrix);
const auto inverseModelSpaceTransform = inverse(modelSpaceTransform);
const auto jointIndex = distance(joints.begin(), jointIter);
transforms->at(jointIndex) = inverseModelSpaceTransform * bindMatrix;
@@ -1028,7 +1035,8 @@ namespace thermion_filament
return transforms;
}
bool SceneManager::updateBoneMatrices(EntityId entityId) {
bool SceneManager::updateBoneMatrices(EntityId entityId)
{
auto *instance = getInstanceByEntityId(entityId);
if (!instance)
{
@@ -1046,11 +1054,13 @@ namespace thermion_filament
return true;
}
bool SceneManager::setTransform(EntityId entityId, math::mat4f transform) {
auto& tm = _engine->getTransformManager();
const auto& entity = Entity::import(entityId);
bool SceneManager::setTransform(EntityId entityId, math::mat4f transform)
{
auto &tm = _engine->getTransformManager();
const auto &entity = Entity::import(entityId);
auto transformInstance = tm.getInstance(entity);
if(!transformInstance) {
if (!transformInstance)
{
return false;
}
tm.setTransform(transformInstance, transform);
@@ -1059,11 +1069,11 @@ namespace thermion_filament
bool SceneManager::addBoneAnimation(EntityId parentEntity,
int skinIndex,
int boneIndex,
int boneIndex,
const float *const frameData,
int numFrames,
float frameLengthInMs,
float fadeOutInSecs,
float fadeOutInSecs,
float fadeInInSecs,
float maxDelta)
{
@@ -1122,7 +1132,8 @@ namespace thermion_filament
animation.fadeInInSecs = fadeInInSecs;
animation.maxDelta = maxDelta;
animation.skinIndex = skinIndex;
if(!_animationComponentManager->hasComponent(instance->getRoot())) {
if (!_animationComponentManager->hasComponent(instance->getRoot()))
{
Log("ERROR: specified entity is not animatable (has no animation component attached).");
return false;
}
@@ -1135,7 +1146,7 @@ namespace thermion_filament
return true;
}
void SceneManager::playAnimation(EntityId entityId, int index, bool loop, bool reverse, bool replaceActive, float crossfade, float startOffset)
{
std::lock_guard lock(_mutex);
@@ -1160,7 +1171,7 @@ namespace thermion_filament
}
}
if (!_animationComponentManager->hasComponent(instance->getRoot()))
if (!_animationComponentManager->hasComponent(instance->getRoot()))
{
Log("ERROR: specified entity is not animatable (has no animation component attached).");
return;
@@ -1210,13 +1221,16 @@ namespace thermion_filament
bool found = false;
// don't play the animation if it's already running
for(int i=0; i < animationComponent.gltfAnimations.size(); i++) {
if(animationComponent.gltfAnimations[i].index == index) {
for (int i = 0; i < animationComponent.gltfAnimations.size(); i++)
{
if (animationComponent.gltfAnimations[i].index == index)
{
found = true;
break;
}
}
if(!found) {
if (!found)
{
animationComponent.gltfAnimations.push_back(animation);
}
}
@@ -1244,9 +1258,9 @@ namespace thermion_filament
auto &animationComponent = _animationComponentManager->elementAt<0>(animationComponentInstance);
auto erased = std::remove_if(animationComponent.gltfAnimations.begin(),
animationComponent.gltfAnimations.end(),
[=](GltfAnimation &anim)
{ return anim.index == index; });
animationComponent.gltfAnimations.end(),
[=](GltfAnimation &anim)
{ return anim.index == index; });
animationComponent.gltfAnimations.erase(erased,
animationComponent.gltfAnimations.end());
}
@@ -1391,7 +1405,7 @@ namespace thermion_filament
unique_ptr<std::vector<std::string>> names = std::make_unique<std::vector<std::string>>();
const auto *instance = getInstanceByEntityId(assetEntityId);
if (!instance)
{
auto asset = getAssetByEntityId(assetEntityId);
@@ -1401,7 +1415,8 @@ namespace thermion_filament
return names;
}
instance = asset->getInstance();
if(!instance) {
if (!instance)
{
Log("Warning - failed to find instance for specified asset. This is unexpected and probably indicates you are passing the wrong entity");
return names;
}
@@ -1415,7 +1430,7 @@ namespace thermion_filament
for (int i = 0; i < asset->getEntityCount(); i++)
{
utils::Entity e = entities[i];
if (e == target)
{
@@ -1431,7 +1446,8 @@ namespace thermion_filament
return names;
}
unique_ptr<vector<string>> SceneManager::getBoneNames(EntityId assetEntityId, int skinIndex) {
unique_ptr<vector<string>> SceneManager::getBoneNames(EntityId assetEntityId, int skinIndex)
{
unique_ptr<std::vector<std::string>> names = std::make_unique<std::vector<std::string>>();
@@ -1468,7 +1484,6 @@ namespace thermion_filament
return names;
}
void SceneManager::transformToUnitCube(EntityId entityId)
{
const auto *instance = getInstanceByEntityId(entityId);
@@ -1496,7 +1511,8 @@ namespace thermion_filament
tm.setTransform(tm.getInstance(instance->getRoot()), transform);
}
EntityId SceneManager::getParent(EntityId childEntityId) {
EntityId SceneManager::getParent(EntityId childEntityId)
{
auto &tm = _engine->getTransformManager();
const auto child = Entity::import(childEntityId);
const auto &childInstance = tm.getInstance(child);
@@ -1504,7 +1520,7 @@ namespace thermion_filament
return Entity::smuggle(parent);
}
void SceneManager::setParent(EntityId childEntityId, EntityId parentEntityId)
void SceneManager::setParent(EntityId childEntityId, EntityId parentEntityId, bool preserveScaling)
{
auto &tm = _engine->getTransformManager();
const auto child = Entity::import(childEntityId);
@@ -1512,6 +1528,31 @@ namespace thermion_filament
const auto &parentInstance = tm.getInstance(parent);
const auto &childInstance = tm.getInstance(child);
if (preserveScaling)
{
auto parentTransform = tm.getWorldTransform(parentInstance);
math::float3 parentTranslation;
math::quatf parentRotation;
math::float3 parentScale;
decomposeMatrix(parentTransform, &parentTranslation, &parentRotation, &parentScale);
auto childTransform = tm.getTransform(childInstance);
math::float3 childTranslation;
math::quatf childRotation;
math::float3 childScale;
decomposeMatrix(childTransform, &childTranslation, &childRotation, &childScale);
childScale = childScale * (1 / parentScale);
childTransform = composeMatrix(childTranslation, childRotation, childScale);
tm.setTransform(childInstance, childTransform);
}
// auto scale = childInstance.
tm.setParent(childInstance, parentInstance);
}
@@ -1587,12 +1628,16 @@ namespace thermion_filament
_animationComponentManager->update();
}
void SceneManager::updateTransforms()
{
std::lock_guard lock(_mutex);
auto &tm = _engine->getTransformManager();
_gizmo->updateTransform();
for (const auto &[entityId, transformUpdate] : _transformUpdates)
{
const auto &pos = _instances.find(entityId);
@@ -1751,25 +1796,77 @@ namespace thermion_filament
tm.setTransform(transformInstance, newTransform);
}
void SceneManager::queuePositionUpdate(EntityId entity, float x, float y, float z, bool relative)
void SceneManager::queuePositionUpdate(EntityId entity, float x, float y, float z, bool relative)
{
std::lock_guard lock(_mutex);
const auto &pos = _transformUpdates.find(entity);
if (pos == _transformUpdates.end())
{
std::lock_guard lock(_mutex);
const auto &pos = _transformUpdates.find(entity);
if (pos == _transformUpdates.end())
{
_transformUpdates.emplace(entity, std::make_tuple(math::float3(), true, math::quatf(1.0f), true, 1.0f));
}
auto curr = _transformUpdates[entity];
auto &trans = std::get<0>(curr);
trans.x = x;
trans.y = y;
trans.z = z;
auto &isRelative = std::get<1>(curr);
isRelative = relative;
_transformUpdates[entity] = curr;
_transformUpdates.emplace(entity, std::make_tuple(math::float3(), true, math::quatf(1.0f), true, 1.0f));
}
auto curr = _transformUpdates[entity];
auto &trans = std::get<0>(curr);
const auto &tm = _engine->getTransformManager();
auto transformInstance = tm.getInstance(Entity::import(entity));
auto transform = tm.getTransform(transformInstance);
math::double4 position { 0.0f, 0.0f, 0.0f, 1.0f};
math::mat4 worldTransform = tm.getWorldTransformAccurate(transformInstance);
position = worldTransform * position;
// Get camera's view matrix and its inverse
const Camera &camera = _view->getCamera();
math::mat4 viewMatrix = camera.getViewMatrix();
math::mat4 invViewMatrix = inverse(viewMatrix);
// Transform object position to view space
math::double4 viewSpacePos = viewMatrix * position;
Log("viewSpacePos %f %f %f %f", viewSpacePos.x, viewSpacePos.y, viewSpacePos.z, viewSpacePos.w);
// Calculate plane distance from camera
float planeDistance = -viewSpacePos.z;
const auto &vp = _view->getViewport();
// Calculate viewport to world scale at the object's distance
float viewportToWorldScale = planeDistance * std::tan(camera.getFieldOfViewInDegrees(Camera::Fov::VERTICAL) * 0.5f * M_PI / 180.0f) * 2.0f / vp.height;
Log("viewportToWorldScale %f", viewportToWorldScale);
// Calculate view space delta
math::float4 viewSpaceDelta(
x * viewportToWorldScale,
-y * viewportToWorldScale, // Invert y-axis
z * viewportToWorldScale,
0.0f); // Use 0 for the w component as it's a direction, not a position
Log("viewSpaceDelta %f %f %f", viewSpaceDelta.x, viewSpaceDelta.y, viewSpaceDelta.z);
// Transform delta to world space
math::float4 worldDelta = invViewMatrix * viewSpaceDelta;
Log("worldDelta %f %f %f", worldDelta.x, worldDelta.y, worldDelta.z);
if (relative)
{
trans.x += worldDelta.x;
trans.y += worldDelta.y;
trans.z += worldDelta.z;
}
else
{
trans.x = worldDelta.x;
trans.y = worldDelta.y;
trans.z = worldDelta.z;
}
auto &isRelative = std::get<1>(curr);
isRelative = relative;
_transformUpdates[entity] = curr;
}
void SceneManager::queueRotationUpdate(EntityId entity, float rads, float x, float y, float z, float w, bool relative)
{
@@ -2011,131 +2108,86 @@ namespace thermion_filament
Log("Set instance renderable priority to %d", priority);
}
EntityId SceneManager::addGizmo()
Aabb2 SceneManager::getBoundingBox(EntityId entityId)
{
_gizmoMaterial =
Material::Builder()
.package(GIZMO_GIZMO_DATA, GIZMO_GIZMO_SIZE)
.build(*_engine);
const auto &camera = _view->getCamera();
const auto &viewport = _view->getViewport();
auto vertexCount = 9;
auto &tcm = _engine->getTransformManager();
auto &rcm = _engine->getRenderableManager();
float *vertices = new float[vertexCount * 3]{
-0.05, 0.0f, 0.05f,
0.05f, 0.0f, 0.05f,
0.05f, 0.0f, -0.05f,
-0.05f, 0.0f, -0.05f,
-0.05f, 1.0f, 0.05f,
0.05f, 1.0f, 0.05f,
0.05f, 1.0f, -0.05f,
-0.05f, 1.0f, -0.05f,
0.00f, 1.1f, 0.0f};
// Get the projection and view matrices
math::mat4 projMatrix = camera.getProjectionMatrix();
math::mat4 viewMatrix = camera.getViewMatrix();
math::mat4 vpMatrix = projMatrix * viewMatrix;
VertexBuffer::BufferDescriptor::Callback vertexCallback = [](void *buf, size_t,
void *data)
auto entity = Entity::import(entityId);
auto renderable = rcm.getInstance(entity);
auto worldTransform = tcm.getWorldTransform(tcm.getInstance(entity));
// Get the axis-aligned bounding box in model space
Box aabb = rcm.getAxisAlignedBoundingBox(renderable);
auto min = aabb.getMin();
auto max = aabb.getMax();
Log("min %f %f %f max %f %f %f", min.x, min.y, min.z, max.x, max.y, max.z);
// Transform the 8 corners of the AABB to clip space
std::array<math::float4, 8> corners = {
worldTransform * math::float4(min.x, min.y, min.z, 1.0f),
worldTransform * math::float4(max.x, min.y, min.z, 1.0f),
worldTransform * math::float4(min.x, max.y, min.z, 1.0f),
worldTransform * math::float4(max.x, max.y, min.z, 1.0f),
worldTransform * math::float4(min.x, min.y, max.z, 1.0f),
worldTransform * math::float4(max.x, min.y, max.z, 1.0f),
worldTransform * math::float4(min.x, max.y, max.z, 1.0f),
worldTransform * math::float4(max.x, max.y, max.z, 1.0f)};
// Project corners to clip space and convert to viewport space
float minX = std::numeric_limits<float>::max();
float minY = std::numeric_limits<float>::max();
float maxX = std::numeric_limits<float>::lowest();
float maxY = std::numeric_limits<float>::lowest();
for (const auto &corner : corners)
{
free((void *)buf);
};
auto indexCount = 42;
uint16_t *indices = new uint16_t[indexCount]{
// bottom quad
0, 1, 2,
0, 2, 3,
// top "cone"
4, 5, 8,
5, 6, 8,
4, 7, 8,
6, 7, 8,
// front
0, 1, 4,
1, 5, 4,
// right
1, 2, 5,
2, 6, 5,
// back
2, 6, 7,
7, 3, 2,
// left
0, 4, 7,
7, 3, 0
math::float4 clipSpace = vpMatrix * corner;
};
// Check if the point is behind the camera
if (clipSpace.w <= 0)
{
continue; // Skip this point
}
IndexBuffer::BufferDescriptor::Callback indexCallback = [](void *buf, size_t,
void *data)
{
free((void *)buf);
};
// Perform perspective division
math::float3 ndcSpace = clipSpace.xyz / clipSpace.w;
auto vb = VertexBuffer::Builder()
.vertexCount(vertexCount)
.bufferCount(1)
.attribute(
VertexAttribute::POSITION, 0, VertexBuffer::AttributeType::FLOAT3)
.build(*_engine);
// Clamp NDC coordinates to [-1, 1] range
ndcSpace.x = std::max(-1.0f, std::min(1.0f, ndcSpace.x));
ndcSpace.y = std::max(-1.0f, std::min(1.0f, ndcSpace.y));
vb->setBufferAt(
*_engine,
0,
VertexBuffer::BufferDescriptor(vertices, vb->getVertexCount() * sizeof(filament::math::float3), 0, vertexCallback));
// Convert NDC to viewport space
float viewportX = (ndcSpace.x * 0.5f + 0.5f) * viewport.width;
float viewportY = (1.0f - (ndcSpace.y * 0.5f + 0.5f)) * viewport.height; // Flip Y-axis
auto ib = IndexBuffer::Builder().indexCount(indexCount).bufferType(IndexBuffer::IndexType::USHORT).build(*_engine);
ib->setBuffer(*_engine, IndexBuffer::BufferDescriptor(indices, ib->getIndexCount() * sizeof(uint16_t), 0, indexCallback));
minX = std::min(minX, viewportX);
minY = std::min(minY, viewportY);
maxX = std::max(maxX, viewportX);
maxY = std::max(maxY, viewportY);
}
auto &entityManager = EntityManager::get();
_gizmo[1] = entityManager.create();
_gizmoMaterialInstances[1] = _gizmoMaterial->createInstance();
_gizmoMaterialInstances[1]->setParameter("color", math::float3{1.0f, 0.0f, 0.0f});
RenderableManager::Builder(1)
.boundingBox({{}, {1.0f, 1.0f, 1.0f}})
.material(0, _gizmoMaterialInstances[1])
.geometry(0, RenderableManager::PrimitiveType::TRIANGLES, vb,
ib, 0, indexCount)
.culling(false)
.build(*_engine, _gizmo[1]);
_gizmo[0] = entityManager.create();
_gizmoMaterialInstances[0] = _gizmoMaterial->createInstance();
_gizmoMaterialInstances[0]->setParameter("color", math::float3{0.0f, 1.0f, 0.0f});
auto xTransform = math::mat4f::translation(math::float3{0.0f, 0.05f, -0.05f}) * math::mat4f::rotation(-math::F_PI_2, math::float3{0, 0, 1});
auto *instanceBufferX = InstanceBuffer::Builder(1).localTransforms(&xTransform).build(*_engine);
RenderableManager::Builder(1)
.boundingBox({{}, {1.0f, 1.0f, 1.0f}})
.instances(1, instanceBufferX)
.material(0, _gizmoMaterialInstances[0])
.geometry(0, RenderableManager::PrimitiveType::TRIANGLES, vb,
ib, 0, indexCount)
.culling(false)
.build(*_engine, _gizmo[0]);
_gizmo[2] = entityManager.create();
_gizmoMaterialInstances[2] = _gizmoMaterial->createInstance();
_gizmoMaterialInstances[2]->setParameter("color", math::float3{0.0f, 0.0f, 1.0f});
auto zTransform = math::mat4f::translation(math::float3{0.0f, 0.05f, -0.05f}) * math::mat4f::rotation(3 * math::F_PI_2, math::float3{1, 0, 0});
auto *instanceBufferZ = InstanceBuffer::Builder(1).localTransforms(&zTransform).build(*_engine);
RenderableManager::Builder(1)
.boundingBox({{}, {1.0f, 1.0f, 1.0f}})
.instances(1, instanceBufferZ)
.material(0, _gizmoMaterialInstances[2])
.geometry(0, RenderableManager::PrimitiveType::TRIANGLES, vb,
ib, 0, indexCount)
.culling(false)
.build(*_engine, _gizmo[2]);
auto &rm = _engine->getRenderableManager();
rm.setPriority(rm.getInstance(_gizmo[0]), 7);
rm.setPriority(rm.getInstance(_gizmo[1]), 7);
rm.setPriority(rm.getInstance(_gizmo[2]), 7);
return Entity::smuggle(_gizmo[0]);
return Aabb2{minX, minY, maxX, maxY};
}
void SceneManager::getGizmo(EntityId *out)
{
out[0] = Entity::smuggle(_gizmo[0]);
out[1] = Entity::smuggle(_gizmo[1]);
out[2] = Entity::smuggle(_gizmo[2]);
out[0] = Entity::smuggle(_gizmo->x());
out[1] = Entity::smuggle(_gizmo->y());
out[2] = Entity::smuggle(_gizmo->z());
out[3] = Entity::smuggle(_gizmo->center());
}
} // namespace thermion_filament