first commit
This commit is contained in:
290
ios/include/tsl/robin_growth_policy.h
Normal file
290
ios/include/tsl/robin_growth_policy.h
Normal file
@@ -0,0 +1,290 @@
|
||||
/**
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2017 Tessil
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
#ifndef TSL_ROBIN_GROWTH_POLICY_H
|
||||
#define TSL_ROBIN_GROWTH_POLICY_H
|
||||
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <climits>
|
||||
#include <cmath>
|
||||
#include <cstddef>
|
||||
#include <iterator>
|
||||
#include <limits>
|
||||
#include <ratio>
|
||||
#include <stdexcept>
|
||||
|
||||
#ifdef __EXCEPTIONS
|
||||
# define THROW(_e, _m) throw _e(_m)
|
||||
#else
|
||||
# include <stdio.h>
|
||||
# ifndef NDEBUG
|
||||
# define THROW(_e, _m) do { fprintf(stderr, _m); std::terminate(); } while(0)
|
||||
# else
|
||||
# define THROW(_e, _m) std::terminate()
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef __has_builtin
|
||||
#define __has_builtin(x) 0
|
||||
#endif
|
||||
|
||||
#if __has_builtin(__builtin_expect)
|
||||
# define TSL_LIKELY( exp ) (__builtin_expect( !!(exp), true ))
|
||||
#else
|
||||
# define TSL_LIKELY( exp ) (exp)
|
||||
#endif
|
||||
|
||||
namespace tsl {
|
||||
namespace rh {
|
||||
|
||||
/**
|
||||
* Grow the hash table by a factor of GrowthFactor keeping the bucket count to a power of two. It allows
|
||||
* the table to use a mask operation instead of a modulo operation to map a hash to a bucket.
|
||||
*
|
||||
* GrowthFactor must be a power of two >= 2.
|
||||
*/
|
||||
template<std::size_t GrowthFactor>
|
||||
class power_of_two_growth_policy {
|
||||
public:
|
||||
/**
|
||||
* Called on the hash table creation and on rehash. The number of buckets for the table is passed in parameter.
|
||||
* This number is a minimum, the policy may update this value with a higher value if needed (but not lower).
|
||||
*/
|
||||
power_of_two_growth_policy(std::size_t& min_bucket_count_in_out) {
|
||||
if(min_bucket_count_in_out > max_bucket_count()) {
|
||||
THROW(std::length_error, "The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
static_assert(MIN_BUCKETS_SIZE > 0, "MIN_BUCKETS_SIZE must be > 0.");
|
||||
const std::size_t min_bucket_count = MIN_BUCKETS_SIZE;
|
||||
|
||||
min_bucket_count_in_out = std::max(min_bucket_count, min_bucket_count_in_out);
|
||||
min_bucket_count_in_out = round_up_to_power_of_two(min_bucket_count_in_out);
|
||||
m_mask = min_bucket_count_in_out - 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the bucket [0, bucket_count()) to which the hash belongs.
|
||||
*/
|
||||
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
|
||||
return hash & m_mask;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the bucket count to use when the bucket array grows on rehash.
|
||||
*/
|
||||
std::size_t next_bucket_count() const {
|
||||
if((m_mask + 1) > max_bucket_count() / GrowthFactor) {
|
||||
THROW(std::length_error, "The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
return (m_mask + 1) * GrowthFactor;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the maximum number of buckets supported by the policy.
|
||||
*/
|
||||
std::size_t max_bucket_count() const {
|
||||
// Largest power of two.
|
||||
return (std::numeric_limits<std::size_t>::max() / 2) + 1;
|
||||
}
|
||||
|
||||
private:
|
||||
static std::size_t round_up_to_power_of_two(std::size_t value) {
|
||||
if(is_power_of_two(value)) {
|
||||
return value;
|
||||
}
|
||||
|
||||
if(value == 0) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
--value;
|
||||
for(std::size_t i = 1; i < sizeof(std::size_t) * CHAR_BIT; i *= 2) {
|
||||
value |= value >> i;
|
||||
}
|
||||
|
||||
return value + 1;
|
||||
}
|
||||
|
||||
static constexpr bool is_power_of_two(std::size_t value) {
|
||||
return value != 0 && (value & (value - 1)) == 0;
|
||||
}
|
||||
|
||||
protected:
|
||||
static const std::size_t MIN_BUCKETS_SIZE = 2;
|
||||
static_assert(is_power_of_two(GrowthFactor) && GrowthFactor >= 2, "GrowthFactor must be a power of two >= 2.");
|
||||
|
||||
std::size_t m_mask;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Grow the hash table by GrowthFactor::num / GrowthFactor::den and use a modulo to map a hash
|
||||
* to a bucket. Slower but it can be usefull if you want a slower growth.
|
||||
*/
|
||||
template<class GrowthFactor = std::ratio<3, 2>>
|
||||
class mod_growth_policy {
|
||||
public:
|
||||
mod_growth_policy(std::size_t& min_bucket_count_in_out) {
|
||||
if(min_bucket_count_in_out > max_bucket_count()) {
|
||||
THROW(std::length_error, "The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
static_assert(MIN_BUCKETS_SIZE > 0, "MIN_BUCKETS_SIZE must be > 0.");
|
||||
const std::size_t min_bucket_count = MIN_BUCKETS_SIZE;
|
||||
|
||||
min_bucket_count_in_out = std::max(min_bucket_count, min_bucket_count_in_out);
|
||||
m_bucket_count = min_bucket_count_in_out;
|
||||
}
|
||||
|
||||
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
|
||||
return hash % m_bucket_count;
|
||||
}
|
||||
|
||||
std::size_t next_bucket_count() const {
|
||||
if(m_bucket_count == max_bucket_count()) {
|
||||
THROW(std::length_error, "The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
const double next_bucket_count = std::ceil(double(m_bucket_count) * REHASH_SIZE_MULTIPLICATION_FACTOR);
|
||||
if(!std::isnormal(next_bucket_count)) {
|
||||
THROW(std::length_error, "The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
if(next_bucket_count > double(max_bucket_count())) {
|
||||
return max_bucket_count();
|
||||
}
|
||||
else {
|
||||
return std::size_t(next_bucket_count);
|
||||
}
|
||||
}
|
||||
|
||||
std::size_t max_bucket_count() const {
|
||||
return MAX_BUCKET_COUNT;
|
||||
}
|
||||
|
||||
private:
|
||||
static const std::size_t MIN_BUCKETS_SIZE = 2;
|
||||
static constexpr double REHASH_SIZE_MULTIPLICATION_FACTOR = 1.0 * GrowthFactor::num / GrowthFactor::den;
|
||||
static const std::size_t MAX_BUCKET_COUNT =
|
||||
std::size_t(double(
|
||||
std::numeric_limits<std::size_t>::max() / REHASH_SIZE_MULTIPLICATION_FACTOR
|
||||
));
|
||||
|
||||
static_assert(REHASH_SIZE_MULTIPLICATION_FACTOR >= 1.1, "Growth factor should be >= 1.1.");
|
||||
|
||||
std::size_t m_bucket_count;
|
||||
};
|
||||
|
||||
|
||||
|
||||
namespace detail {
|
||||
|
||||
static constexpr const std::array<std::size_t, 39> PRIMES = {{
|
||||
5ul, 17ul, 29ul, 37ul, 53ul, 67ul, 79ul, 97ul, 131ul, 193ul, 257ul, 389ul, 521ul, 769ul, 1031ul, 1543ul, 2053ul,
|
||||
3079ul, 6151ul, 12289ul, 24593ul, 49157ul, 98317ul, 196613ul, 393241ul, 786433ul, 1572869ul, 3145739ul,
|
||||
6291469ul, 12582917ul, 25165843ul, 50331653ul, 100663319ul, 201326611ul, 402653189ul, 805306457ul,
|
||||
1610612741ul, 3221225473ul, 4294967291ul
|
||||
}};
|
||||
|
||||
template<unsigned int IPrime>
|
||||
static constexpr std::size_t mod(std::size_t hash) { return hash % PRIMES[IPrime]; }
|
||||
|
||||
// MOD_PRIME[iprime](hash) returns hash % PRIMES[iprime]. This table allows for faster modulo as the
|
||||
// compiler can optimize the modulo code better with a constant known at the compilation.
|
||||
static constexpr const std::array<std::size_t(*)(std::size_t), 39> MOD_PRIME = {{
|
||||
&mod<0>, &mod<1>, &mod<2>, &mod<3>, &mod<4>, &mod<5>, &mod<6>, &mod<7>, &mod<8>, &mod<9>, &mod<10>,
|
||||
&mod<11>, &mod<12>, &mod<13>, &mod<14>, &mod<15>, &mod<16>, &mod<17>, &mod<18>, &mod<19>, &mod<20>,
|
||||
&mod<21>, &mod<22>, &mod<23>, &mod<24>, &mod<25>, &mod<26>, &mod<27>, &mod<28>, &mod<29>, &mod<30>,
|
||||
&mod<31>, &mod<32>, &mod<33>, &mod<34>, &mod<35>, &mod<36>, &mod<37> , &mod<38>
|
||||
}};
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Grow the hash table by using prime numbers as bucket count. Slower than tsl::rh::power_of_two_growth_policy in
|
||||
* general but will probably distribute the values around better in the buckets with a poor hash function.
|
||||
*
|
||||
* To allow the compiler to optimize the modulo operation, a lookup table is used with constant primes numbers.
|
||||
*
|
||||
* With a switch the code would look like:
|
||||
* \code
|
||||
* switch(iprime) { // iprime is the current prime of the hash table
|
||||
* case 0: hash % 5ul;
|
||||
* break;
|
||||
* case 1: hash % 17ul;
|
||||
* break;
|
||||
* case 2: hash % 29ul;
|
||||
* break;
|
||||
* ...
|
||||
* }
|
||||
* \endcode
|
||||
*
|
||||
* Due to the constant variable in the modulo the compiler is able to optimize the operation
|
||||
* by a series of multiplications, substractions and shifts.
|
||||
*
|
||||
* The 'hash % 5' could become something like 'hash - (hash * 0xCCCCCCCD) >> 34) * 5' in a 64 bits environement.
|
||||
*/
|
||||
class prime_growth_policy {
|
||||
public:
|
||||
prime_growth_policy(std::size_t& min_bucket_count_in_out) {
|
||||
auto it_prime = std::lower_bound(detail::PRIMES.begin(),
|
||||
detail::PRIMES.end(), min_bucket_count_in_out);
|
||||
if(it_prime == detail::PRIMES.end()) {
|
||||
THROW(std::length_error, "The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
m_iprime = static_cast<unsigned int>(std::distance(detail::PRIMES.begin(), it_prime));
|
||||
min_bucket_count_in_out = *it_prime;
|
||||
}
|
||||
|
||||
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
|
||||
return detail::MOD_PRIME[m_iprime](hash);
|
||||
}
|
||||
|
||||
std::size_t next_bucket_count() const {
|
||||
if(m_iprime + 1 >= detail::PRIMES.size()) {
|
||||
THROW(std::length_error, "The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
return detail::PRIMES[m_iprime + 1];
|
||||
}
|
||||
|
||||
std::size_t max_bucket_count() const {
|
||||
return detail::PRIMES.back();
|
||||
}
|
||||
|
||||
private:
|
||||
unsigned int m_iprime;
|
||||
|
||||
static_assert(std::numeric_limits<decltype(m_iprime)>::max() >= detail::PRIMES.size(),
|
||||
"The type of m_iprime is not big enough.");
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
1252
ios/include/tsl/robin_hash.h
Normal file
1252
ios/include/tsl/robin_hash.h
Normal file
File diff suppressed because it is too large
Load Diff
668
ios/include/tsl/robin_map.h
Normal file
668
ios/include/tsl/robin_map.h
Normal file
@@ -0,0 +1,668 @@
|
||||
/**
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2017 Tessil
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
#ifndef TSL_ROBIN_MAP_H
|
||||
#define TSL_ROBIN_MAP_H
|
||||
|
||||
|
||||
#include <cstddef>
|
||||
#include <functional>
|
||||
#include <initializer_list>
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
#include "robin_hash.h"
|
||||
|
||||
|
||||
namespace tsl {
|
||||
|
||||
|
||||
/**
|
||||
* Implementation of a hash map using open-adressing and the robin hood hashing algorithm with backward shift deletion.
|
||||
*
|
||||
* For operations modifying the hash map (insert, erase, rehash, ...), the strong exception guarantee
|
||||
* is only guaranteed when the expression `std::is_nothrow_swappable<std::pair<Key, T>>::value &&
|
||||
* std::is_nothrow_move_constructible<std::pair<Key, T>>::value` is true, otherwise if an exception
|
||||
* is thrown during the swap or the move, the hash map may end up in a undefined state. Per the standard
|
||||
* a `Key` or `T` with a noexcept copy constructor and no move constructor also satisfies the
|
||||
* `std::is_nothrow_move_constructible<std::pair<Key, T>>::value` criterion (and will thus guarantee the
|
||||
* strong exception for the map).
|
||||
*
|
||||
* When `StoreHash` is true, 32 bits of the hash are stored alongside the values. It can improve
|
||||
* the performance during lookups if the `KeyEqual` function takes time (if it engenders a cache-miss for example)
|
||||
* as we then compare the stored hashes before comparing the keys. When `tsl::rh::power_of_two_growth_policy` is used
|
||||
* as `GrowthPolicy`, it may also speed-up the rehash process as we can avoid to recalculate the hash.
|
||||
* When it is detected that storing the hash will not incur any memory penality due to alignement (i.e.
|
||||
* `sizeof(tsl::detail_robin_hash::bucket_entry<ValueType, true>) ==
|
||||
* sizeof(tsl::detail_robin_hash::bucket_entry<ValueType, false>)`) and `tsl::rh::power_of_two_growth_policy` is
|
||||
* used, the hash will be stored even if `StoreHash` is false so that we can speed-up the rehash (but it will
|
||||
* not be used on lookups unless `StoreHash` is true).
|
||||
*
|
||||
* `GrowthPolicy` defines how the map grows and consequently how a hash value is mapped to a bucket.
|
||||
* By default the map uses `tsl::rh::power_of_two_growth_policy`. This policy keeps the number of buckets
|
||||
* to a power of two and uses a mask to map the hash to a bucket instead of the slow modulo.
|
||||
* Other growth policies are available and you may define your own growth policy,
|
||||
* check `tsl::rh::power_of_two_growth_policy` for the interface.
|
||||
*
|
||||
* If the destructor of `Key` or `T` throws an exception, the behaviour of the class is undefined.
|
||||
*
|
||||
* Iterators invalidation:
|
||||
* - clear, operator=, reserve, rehash: always invalidate the iterators.
|
||||
* - insert, emplace, emplace_hint, operator[]: if there is an effective insert, invalidate the iterators.
|
||||
* - erase: always invalidate the iterators.
|
||||
*/
|
||||
template<class Key,
|
||||
class T,
|
||||
class Hash = std::hash<Key>,
|
||||
class KeyEqual = std::equal_to<Key>,
|
||||
class Allocator = std::allocator<std::pair<Key, T>>,
|
||||
bool StoreHash = false,
|
||||
class GrowthPolicy = tsl::rh::power_of_two_growth_policy<2>>
|
||||
class robin_map {
|
||||
private:
|
||||
template<typename U>
|
||||
using has_is_transparent = tsl::detail_robin_hash::has_is_transparent<U>;
|
||||
|
||||
class KeySelect {
|
||||
public:
|
||||
using key_type = Key;
|
||||
|
||||
const key_type& operator()(const std::pair<Key, T>& key_value) const noexcept {
|
||||
return key_value.first;
|
||||
}
|
||||
|
||||
key_type& operator()(std::pair<Key, T>& key_value) noexcept {
|
||||
return key_value.first;
|
||||
}
|
||||
};
|
||||
|
||||
class ValueSelect {
|
||||
public:
|
||||
using value_type = T;
|
||||
|
||||
const value_type& operator()(const std::pair<Key, T>& key_value) const noexcept {
|
||||
return key_value.second;
|
||||
}
|
||||
|
||||
value_type& operator()(std::pair<Key, T>& key_value) noexcept {
|
||||
return key_value.second;
|
||||
}
|
||||
};
|
||||
|
||||
using ht = detail_robin_hash::robin_hash<std::pair<Key, T>, KeySelect, ValueSelect,
|
||||
Hash, KeyEqual, Allocator, StoreHash, GrowthPolicy>;
|
||||
|
||||
public:
|
||||
using key_type = typename ht::key_type;
|
||||
using mapped_type = T;
|
||||
using value_type = typename ht::value_type;
|
||||
using size_type = typename ht::size_type;
|
||||
using difference_type = typename ht::difference_type;
|
||||
using hasher = typename ht::hasher;
|
||||
using key_equal = typename ht::key_equal;
|
||||
using allocator_type = typename ht::allocator_type;
|
||||
using reference = typename ht::reference;
|
||||
using const_reference = typename ht::const_reference;
|
||||
using pointer = typename ht::pointer;
|
||||
using const_pointer = typename ht::const_pointer;
|
||||
using iterator = typename ht::iterator;
|
||||
using const_iterator = typename ht::const_iterator;
|
||||
|
||||
|
||||
public:
|
||||
/*
|
||||
* Constructors
|
||||
*/
|
||||
robin_map(): robin_map(ht::DEFAULT_INIT_BUCKETS_SIZE) {
|
||||
}
|
||||
|
||||
explicit robin_map(size_type bucket_count,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()):
|
||||
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR)
|
||||
{
|
||||
}
|
||||
|
||||
robin_map(size_type bucket_count,
|
||||
const Allocator& alloc): robin_map(bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
robin_map(size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc): robin_map(bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
explicit robin_map(const Allocator& alloc): robin_map(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
robin_map(InputIt first, InputIt last,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()): robin_map(bucket_count, hash, equal, alloc)
|
||||
{
|
||||
insert(first, last);
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
robin_map(InputIt first, InputIt last,
|
||||
size_type bucket_count,
|
||||
const Allocator& alloc): robin_map(first, last, bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
robin_map(InputIt first, InputIt last,
|
||||
size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc): robin_map(first, last, bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
robin_map(std::initializer_list<value_type> init,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()):
|
||||
robin_map(init.begin(), init.end(), bucket_count, hash, equal, alloc)
|
||||
{
|
||||
}
|
||||
|
||||
robin_map(std::initializer_list<value_type> init,
|
||||
size_type bucket_count,
|
||||
const Allocator& alloc):
|
||||
robin_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
robin_map(std::initializer_list<value_type> init,
|
||||
size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc):
|
||||
robin_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
robin_map& operator=(std::initializer_list<value_type> ilist) {
|
||||
m_ht.clear();
|
||||
|
||||
m_ht.reserve(ilist.size());
|
||||
m_ht.insert(ilist.begin(), ilist.end());
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
allocator_type get_allocator() const { return m_ht.get_allocator(); }
|
||||
|
||||
|
||||
/*
|
||||
* Iterators
|
||||
*/
|
||||
iterator begin() noexcept { return m_ht.begin(); }
|
||||
const_iterator begin() const noexcept { return m_ht.begin(); }
|
||||
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
|
||||
|
||||
iterator end() noexcept { return m_ht.end(); }
|
||||
const_iterator end() const noexcept { return m_ht.end(); }
|
||||
const_iterator cend() const noexcept { return m_ht.cend(); }
|
||||
|
||||
|
||||
/*
|
||||
* Capacity
|
||||
*/
|
||||
bool empty() const noexcept { return m_ht.empty(); }
|
||||
size_type size() const noexcept { return m_ht.size(); }
|
||||
size_type max_size() const noexcept { return m_ht.max_size(); }
|
||||
|
||||
/*
|
||||
* Modifiers
|
||||
*/
|
||||
void clear() noexcept { m_ht.clear(); }
|
||||
|
||||
|
||||
|
||||
std::pair<iterator, bool> insert(const value_type& value) {
|
||||
return m_ht.insert(value);
|
||||
}
|
||||
|
||||
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
|
||||
std::pair<iterator, bool> insert(P&& value) {
|
||||
return m_ht.emplace(std::forward<P>(value));
|
||||
}
|
||||
|
||||
std::pair<iterator, bool> insert(value_type&& value) {
|
||||
return m_ht.insert(std::move(value));
|
||||
}
|
||||
|
||||
|
||||
iterator insert(const_iterator hint, const value_type& value) {
|
||||
return m_ht.insert(hint, value);
|
||||
}
|
||||
|
||||
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
|
||||
iterator insert(const_iterator hint, P&& value) {
|
||||
return m_ht.emplace_hint(hint, std::forward<P>(value));
|
||||
}
|
||||
|
||||
iterator insert(const_iterator hint, value_type&& value) {
|
||||
return m_ht.insert(hint, std::move(value));
|
||||
}
|
||||
|
||||
|
||||
template<class InputIt>
|
||||
void insert(InputIt first, InputIt last) {
|
||||
m_ht.insert(first, last);
|
||||
}
|
||||
|
||||
void insert(std::initializer_list<value_type> ilist) {
|
||||
m_ht.insert(ilist.begin(), ilist.end());
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template<class M>
|
||||
std::pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj) {
|
||||
return m_ht.insert_or_assign(k, std::forward<M>(obj));
|
||||
}
|
||||
|
||||
template<class M>
|
||||
std::pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj) {
|
||||
return m_ht.insert_or_assign(std::move(k), std::forward<M>(obj));
|
||||
}
|
||||
|
||||
template<class M>
|
||||
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj) {
|
||||
return m_ht.insert_or_assign(hint, k, std::forward<M>(obj));
|
||||
}
|
||||
|
||||
template<class M>
|
||||
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj) {
|
||||
return m_ht.insert_or_assign(hint, std::move(k), std::forward<M>(obj));
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
|
||||
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
|
||||
*
|
||||
* Mainly here for compatibility with the std::unordered_map interface.
|
||||
*/
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> emplace(Args&&... args) {
|
||||
return m_ht.emplace(std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
|
||||
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
|
||||
*
|
||||
* Mainly here for compatibility with the std::unordered_map interface.
|
||||
*/
|
||||
template<class... Args>
|
||||
iterator emplace_hint(const_iterator hint, Args&&... args) {
|
||||
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args) {
|
||||
return m_ht.try_emplace(k, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args) {
|
||||
return m_ht.try_emplace(std::move(k), std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template<class... Args>
|
||||
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args) {
|
||||
return m_ht.try_emplace(hint, k, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template<class... Args>
|
||||
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args) {
|
||||
return m_ht.try_emplace(hint, std::move(k), std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
iterator erase(iterator pos) { return m_ht.erase(pos); }
|
||||
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
|
||||
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
|
||||
size_type erase(const key_type& key) { return m_ht.erase(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
size_type erase(const key_type& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type erase(const K& key) { return m_ht.erase(key); }
|
||||
|
||||
/**
|
||||
* @copydoc erase(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type erase(const K& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void swap(robin_map& other) { other.m_ht.swap(m_ht); }
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Lookup
|
||||
*/
|
||||
T& at(const Key& key) { return m_ht.at(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
T& at(const Key& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
|
||||
|
||||
|
||||
const T& at(const Key& key) const { return m_ht.at(key); }
|
||||
|
||||
/**
|
||||
* @copydoc at(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
const T& at(const Key& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
|
||||
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
T& at(const K& key) { return m_ht.at(key); }
|
||||
|
||||
/**
|
||||
* @copydoc at(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
T& at(const K& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
|
||||
|
||||
|
||||
/**
|
||||
* @copydoc at(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const T& at(const K& key) const { return m_ht.at(key); }
|
||||
|
||||
/**
|
||||
* @copydoc at(const K& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const T& at(const K& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
|
||||
|
||||
|
||||
|
||||
|
||||
T& operator[](const Key& key) { return m_ht[key]; }
|
||||
T& operator[](Key&& key) { return m_ht[std::move(key)]; }
|
||||
|
||||
|
||||
|
||||
|
||||
size_type count(const Key& key) const { return m_ht.count(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
size_type count(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.count(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type count(const K& key) const { return m_ht.count(key); }
|
||||
|
||||
/**
|
||||
* @copydoc count(const K& key) const
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type count(const K& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
|
||||
|
||||
|
||||
|
||||
|
||||
iterator find(const Key& key) { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
const_iterator find(const Key& key) const { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
const_iterator find(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.find(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
iterator find(const K& key) { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const_iterator find(const K& key) const { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const_iterator find(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.find(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
|
||||
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Bucket interface
|
||||
*/
|
||||
size_type bucket_count() const { return m_ht.bucket_count(); }
|
||||
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
|
||||
|
||||
|
||||
/*
|
||||
* Hash policy
|
||||
*/
|
||||
float load_factor() const { return m_ht.load_factor(); }
|
||||
float max_load_factor() const { return m_ht.max_load_factor(); }
|
||||
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
|
||||
|
||||
void rehash(size_type count) { m_ht.rehash(count); }
|
||||
void reserve(size_type count) { m_ht.reserve(count); }
|
||||
|
||||
|
||||
/*
|
||||
* Observers
|
||||
*/
|
||||
hasher hash_function() const { return m_ht.hash_function(); }
|
||||
key_equal key_eq() const { return m_ht.key_eq(); }
|
||||
|
||||
/*
|
||||
* Other
|
||||
*/
|
||||
|
||||
/**
|
||||
* Convert a const_iterator to an iterator.
|
||||
*/
|
||||
iterator mutable_iterator(const_iterator pos) {
|
||||
return m_ht.mutable_iterator(pos);
|
||||
}
|
||||
|
||||
friend bool operator==(const robin_map& lhs, const robin_map& rhs) {
|
||||
if(lhs.size() != rhs.size()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for(const auto& element_lhs: lhs) {
|
||||
const auto it_element_rhs = rhs.find(element_lhs.first);
|
||||
if(it_element_rhs == rhs.cend() || element_lhs.second != it_element_rhs->second) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
friend bool operator!=(const robin_map& lhs, const robin_map& rhs) {
|
||||
return !operator==(lhs, rhs);
|
||||
}
|
||||
|
||||
friend void swap(robin_map& lhs, robin_map& rhs) {
|
||||
lhs.swap(rhs);
|
||||
}
|
||||
|
||||
private:
|
||||
ht m_ht;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Same as `tsl::robin_map<Key, T, Hash, KeyEqual, Allocator, StoreHash, tsl::rh::prime_growth_policy>`.
|
||||
*/
|
||||
template<class Key,
|
||||
class T,
|
||||
class Hash = std::hash<Key>,
|
||||
class KeyEqual = std::equal_to<Key>,
|
||||
class Allocator = std::allocator<std::pair<Key, T>>,
|
||||
bool StoreHash = false>
|
||||
using robin_pg_map = robin_map<Key, T, Hash, KeyEqual, Allocator, StoreHash, tsl::rh::prime_growth_policy>;
|
||||
|
||||
} // end namespace tsl
|
||||
|
||||
#endif
|
||||
535
ios/include/tsl/robin_set.h
Normal file
535
ios/include/tsl/robin_set.h
Normal file
@@ -0,0 +1,535 @@
|
||||
/**
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2017 Tessil
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
#ifndef TSL_ROBIN_SET_H
|
||||
#define TSL_ROBIN_SET_H
|
||||
|
||||
|
||||
#include <cstddef>
|
||||
#include <functional>
|
||||
#include <initializer_list>
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
#include "robin_hash.h"
|
||||
|
||||
|
||||
namespace tsl {
|
||||
|
||||
|
||||
/**
|
||||
* Implementation of a hash set using open-adressing and the robin hood hashing algorithm with backward shift deletion.
|
||||
*
|
||||
* For operations modifying the hash set (insert, erase, rehash, ...), the strong exception guarantee
|
||||
* is only guaranteed when the expression `std::is_nothrow_swappable<Key>::value &&
|
||||
* std::is_nothrow_move_constructible<Key>::value` is true, otherwise if an exception
|
||||
* is thrown during the swap or the move, the hash set may end up in a undefined state. Per the standard
|
||||
* a `Key` with a noexcept copy constructor and no move constructor also satisfies the
|
||||
* `std::is_nothrow_move_constructible<Key>::value` criterion (and will thus guarantee the
|
||||
* strong exception for the set).
|
||||
*
|
||||
* When `StoreHash` is true, 32 bits of the hash are stored alongside the values. It can improve
|
||||
* the performance during lookups if the `KeyEqual` function takes time (or engenders a cache-miss for example)
|
||||
* as we then compare the stored hashes before comparing the keys. When `tsl::rh::power_of_two_growth_policy` is used
|
||||
* as `GrowthPolicy`, it may also speed-up the rehash process as we can avoid to recalculate the hash.
|
||||
* When it is detected that storing the hash will not incur any memory penality due to alignement (i.e.
|
||||
* `sizeof(tsl::detail_robin_hash::bucket_entry<ValueType, true>) ==
|
||||
* sizeof(tsl::detail_robin_hash::bucket_entry<ValueType, false>)`) and `tsl::rh::power_of_two_growth_policy` is
|
||||
* used, the hash will be stored even if `StoreHash` is false so that we can speed-up the rehash (but it will
|
||||
* not be used on lookups unless `StoreHash` is true).
|
||||
*
|
||||
* `GrowthPolicy` defines how the set grows and consequently how a hash value is mapped to a bucket.
|
||||
* By default the set uses `tsl::rh::power_of_two_growth_policy`. This policy keeps the number of buckets
|
||||
* to a power of two and uses a mask to set the hash to a bucket instead of the slow modulo.
|
||||
* Other growth policies are available and you may define your own growth policy,
|
||||
* check `tsl::rh::power_of_two_growth_policy` for the interface.
|
||||
*
|
||||
* If the destructor of `Key` throws an exception, the behaviour of the class is undefined.
|
||||
*
|
||||
* Iterators invalidation:
|
||||
* - clear, operator=, reserve, rehash: always invalidate the iterators.
|
||||
* - insert, emplace, emplace_hint, operator[]: if there is an effective insert, invalidate the iterators.
|
||||
* - erase: always invalidate the iterators.
|
||||
*/
|
||||
template<class Key,
|
||||
class Hash = std::hash<Key>,
|
||||
class KeyEqual = std::equal_to<Key>,
|
||||
class Allocator = std::allocator<Key>,
|
||||
bool StoreHash = false,
|
||||
class GrowthPolicy = tsl::rh::power_of_two_growth_policy<2>>
|
||||
class robin_set {
|
||||
private:
|
||||
template<typename U>
|
||||
using has_is_transparent = tsl::detail_robin_hash::has_is_transparent<U>;
|
||||
|
||||
class KeySelect {
|
||||
public:
|
||||
using key_type = Key;
|
||||
|
||||
const key_type& operator()(const Key& key) const noexcept {
|
||||
return key;
|
||||
}
|
||||
|
||||
key_type& operator()(Key& key) noexcept {
|
||||
return key;
|
||||
}
|
||||
};
|
||||
|
||||
using ht = detail_robin_hash::robin_hash<Key, KeySelect, void,
|
||||
Hash, KeyEqual, Allocator, StoreHash, GrowthPolicy>;
|
||||
|
||||
public:
|
||||
using key_type = typename ht::key_type;
|
||||
using value_type = typename ht::value_type;
|
||||
using size_type = typename ht::size_type;
|
||||
using difference_type = typename ht::difference_type;
|
||||
using hasher = typename ht::hasher;
|
||||
using key_equal = typename ht::key_equal;
|
||||
using allocator_type = typename ht::allocator_type;
|
||||
using reference = typename ht::reference;
|
||||
using const_reference = typename ht::const_reference;
|
||||
using pointer = typename ht::pointer;
|
||||
using const_pointer = typename ht::const_pointer;
|
||||
using iterator = typename ht::iterator;
|
||||
using const_iterator = typename ht::const_iterator;
|
||||
|
||||
|
||||
/*
|
||||
* Constructors
|
||||
*/
|
||||
robin_set(): robin_set(ht::DEFAULT_INIT_BUCKETS_SIZE) {
|
||||
}
|
||||
|
||||
explicit robin_set(size_type bucket_count,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()):
|
||||
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR)
|
||||
{
|
||||
}
|
||||
|
||||
robin_set(size_type bucket_count,
|
||||
const Allocator& alloc): robin_set(bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
robin_set(size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc): robin_set(bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
explicit robin_set(const Allocator& alloc): robin_set(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
robin_set(InputIt first, InputIt last,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()): robin_set(bucket_count, hash, equal, alloc)
|
||||
{
|
||||
insert(first, last);
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
robin_set(InputIt first, InputIt last,
|
||||
size_type bucket_count,
|
||||
const Allocator& alloc): robin_set(first, last, bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
robin_set(InputIt first, InputIt last,
|
||||
size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc): robin_set(first, last, bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
robin_set(std::initializer_list<value_type> init,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()):
|
||||
robin_set(init.begin(), init.end(), bucket_count, hash, equal, alloc)
|
||||
{
|
||||
}
|
||||
|
||||
robin_set(std::initializer_list<value_type> init,
|
||||
size_type bucket_count,
|
||||
const Allocator& alloc):
|
||||
robin_set(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
robin_set(std::initializer_list<value_type> init,
|
||||
size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc):
|
||||
robin_set(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
robin_set& operator=(std::initializer_list<value_type> ilist) {
|
||||
m_ht.clear();
|
||||
|
||||
m_ht.reserve(ilist.size());
|
||||
m_ht.insert(ilist.begin(), ilist.end());
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
allocator_type get_allocator() const { return m_ht.get_allocator(); }
|
||||
|
||||
|
||||
/*
|
||||
* Iterators
|
||||
*/
|
||||
iterator begin() noexcept { return m_ht.begin(); }
|
||||
const_iterator begin() const noexcept { return m_ht.begin(); }
|
||||
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
|
||||
|
||||
iterator end() noexcept { return m_ht.end(); }
|
||||
const_iterator end() const noexcept { return m_ht.end(); }
|
||||
const_iterator cend() const noexcept { return m_ht.cend(); }
|
||||
|
||||
|
||||
/*
|
||||
* Capacity
|
||||
*/
|
||||
bool empty() const noexcept { return m_ht.empty(); }
|
||||
size_type size() const noexcept { return m_ht.size(); }
|
||||
size_type max_size() const noexcept { return m_ht.max_size(); }
|
||||
|
||||
/*
|
||||
* Modifiers
|
||||
*/
|
||||
void clear() noexcept { m_ht.clear(); }
|
||||
|
||||
|
||||
|
||||
|
||||
std::pair<iterator, bool> insert(const value_type& value) {
|
||||
return m_ht.insert(value);
|
||||
}
|
||||
|
||||
std::pair<iterator, bool> insert(value_type&& value) {
|
||||
return m_ht.insert(std::move(value));
|
||||
}
|
||||
|
||||
iterator insert(const_iterator hint, const value_type& value) {
|
||||
return m_ht.insert(hint, value);
|
||||
}
|
||||
|
||||
iterator insert(const_iterator hint, value_type&& value) {
|
||||
return m_ht.insert(hint, std::move(value));
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
void insert(InputIt first, InputIt last) {
|
||||
m_ht.insert(first, last);
|
||||
}
|
||||
|
||||
void insert(std::initializer_list<value_type> ilist) {
|
||||
m_ht.insert(ilist.begin(), ilist.end());
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
|
||||
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
|
||||
*
|
||||
* Mainly here for compatibility with the std::unordered_map interface.
|
||||
*/
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> emplace(Args&&... args) {
|
||||
return m_ht.emplace(std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
|
||||
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
|
||||
*
|
||||
* Mainly here for compatibility with the std::unordered_map interface.
|
||||
*/
|
||||
template<class... Args>
|
||||
iterator emplace_hint(const_iterator hint, Args&&... args) {
|
||||
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
iterator erase(iterator pos) { return m_ht.erase(pos); }
|
||||
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
|
||||
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
|
||||
size_type erase(const key_type& key) { return m_ht.erase(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
size_type erase(const key_type& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type erase(const K& key) { return m_ht.erase(key); }
|
||||
|
||||
/**
|
||||
* @copydoc erase(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type erase(const K& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void swap(robin_set& other) { other.m_ht.swap(m_ht); }
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Lookup
|
||||
*/
|
||||
size_type count(const Key& key) const { return m_ht.count(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
size_type count(const Key& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type count(const K& key) const { return m_ht.count(key); }
|
||||
|
||||
/**
|
||||
* @copydoc count(const K& key) const
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type count(const K& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
|
||||
|
||||
|
||||
|
||||
|
||||
iterator find(const Key& key) { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
const_iterator find(const Key& key) const { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
const_iterator find(const Key& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
iterator find(const K& key) { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const_iterator find(const K& key) const { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const_iterator find(const K& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
|
||||
|
||||
|
||||
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Bucket interface
|
||||
*/
|
||||
size_type bucket_count() const { return m_ht.bucket_count(); }
|
||||
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
|
||||
|
||||
|
||||
/*
|
||||
* Hash policy
|
||||
*/
|
||||
float load_factor() const { return m_ht.load_factor(); }
|
||||
float max_load_factor() const { return m_ht.max_load_factor(); }
|
||||
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
|
||||
|
||||
void rehash(size_type count) { m_ht.rehash(count); }
|
||||
void reserve(size_type count) { m_ht.reserve(count); }
|
||||
|
||||
|
||||
/*
|
||||
* Observers
|
||||
*/
|
||||
hasher hash_function() const { return m_ht.hash_function(); }
|
||||
key_equal key_eq() const { return m_ht.key_eq(); }
|
||||
|
||||
|
||||
/*
|
||||
* Other
|
||||
*/
|
||||
|
||||
/**
|
||||
* Convert a const_iterator to an iterator.
|
||||
*/
|
||||
iterator mutable_iterator(const_iterator pos) {
|
||||
return m_ht.mutable_iterator(pos);
|
||||
}
|
||||
|
||||
friend bool operator==(const robin_set& lhs, const robin_set& rhs) {
|
||||
if(lhs.size() != rhs.size()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for(const auto& element_lhs: lhs) {
|
||||
const auto it_element_rhs = rhs.find(element_lhs);
|
||||
if(it_element_rhs == rhs.cend()) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
friend bool operator!=(const robin_set& lhs, const robin_set& rhs) {
|
||||
return !operator==(lhs, rhs);
|
||||
}
|
||||
|
||||
friend void swap(robin_set& lhs, robin_set& rhs) {
|
||||
lhs.swap(rhs);
|
||||
}
|
||||
|
||||
private:
|
||||
ht m_ht;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Same as `tsl::robin_set<Key, Hash, KeyEqual, Allocator, StoreHash, tsl::rh::prime_growth_policy>`.
|
||||
*/
|
||||
template<class Key,
|
||||
class Hash = std::hash<Key>,
|
||||
class KeyEqual = std::equal_to<Key>,
|
||||
class Allocator = std::allocator<Key>,
|
||||
bool StoreHash = false>
|
||||
using robin_pg_set = robin_set<Key, Hash, KeyEqual, Allocator, StoreHash, tsl::rh::prime_growth_policy>;
|
||||
|
||||
} // end namespace tsl
|
||||
|
||||
#endif
|
||||
|
||||
Reference in New Issue
Block a user