upgrade Filament to v1.41

This commit is contained in:
Nick Fisher
2023-08-18 12:01:14 +08:00
parent e62bf64c04
commit d82bdff939
72 changed files with 2455 additions and 2514 deletions

View File

@@ -77,6 +77,8 @@ namespace polyvox {
MaterialProvider* _ubershaderProvider = nullptr;
gltfio::ResourceLoader* _gltfResourceLoader = nullptr;
gltfio::TextureProvider* _stbDecoder = nullptr;
gltfio::TextureProvider* _ktxDecoder = nullptr;
vector<SceneAsset> _assets;
tsl::robin_map<EntityId, int> _entityIdLookup;

View File

@@ -106,7 +106,8 @@ static constexpr size_t CONFIG_SAMPLER_BINDING_COUNT = 4; // This is guarantee
* Defines the backend's feature levels.
*/
enum class FeatureLevel : uint8_t {
FEATURE_LEVEL_1 = 1, //!< OpenGL ES 3.0 features (default)
FEATURE_LEVEL_0 = 0, //!< OpenGL ES 2.0 features
FEATURE_LEVEL_1, //!< OpenGL ES 3.0 features (default)
FEATURE_LEVEL_2, //!< OpenGL ES 3.1 features + 16 textures units + cubemap arrays
FEATURE_LEVEL_3 //!< OpenGL ES 3.1 features + 31 textures units + cubemap arrays
};
@@ -279,6 +280,15 @@ enum class UniformType : uint8_t {
STRUCT
};
/**
* Supported constant parameter types
*/
enum class ConstantType : uint8_t {
INT,
FLOAT,
BOOL
};
enum class Precision : uint8_t {
LOW,
MEDIUM,
@@ -286,6 +296,14 @@ enum class Precision : uint8_t {
DEFAULT
};
/**
* Shader compiler priority queue
*/
enum class CompilerPriorityQueue : uint8_t {
HIGH,
LOW
};
//! Texture sampler type
enum class SamplerType : uint8_t {
SAMPLER_2D, //!< 2D texture
@@ -1117,7 +1135,12 @@ enum class Workaround : uint16_t {
// the whole render pass.
ALLOW_READ_ONLY_ANCILLARY_FEEDBACK_LOOP,
// for some uniform arrays, it's needed to do an initialization to avoid crash on adreno gpu
ADRENO_UNIFORM_ARRAY_CRASH
ADRENO_UNIFORM_ARRAY_CRASH,
// Workaround a Metal pipeline compilation error with the message:
// "Could not statically determine the target of a texture". See light_indirect.fs
A8X_STATIC_TEXTURE_TARGET_ERROR,
// Adreno drivers sometimes aren't able to blit into a layer of a texture array.
DISABLE_BLIT_INTO_TEXTURE_ARRAY,
};
} // namespace filament::backend

View File

@@ -39,7 +39,6 @@ struct HwRenderTarget;
struct HwSamplerGroup;
struct HwStream;
struct HwSwapChain;
struct HwSync;
struct HwTexture;
struct HwTimerQuery;
struct HwVertexBuffer;
@@ -126,7 +125,6 @@ using RenderTargetHandle = Handle<HwRenderTarget>;
using SamplerGroupHandle = Handle<HwSamplerGroup>;
using StreamHandle = Handle<HwStream>;
using SwapChainHandle = Handle<HwSwapChain>;
using SyncHandle = Handle<HwSync>;
using TextureHandle = Handle<HwTexture>;
using TimerQueryHandle = Handle<HwTimerQuery>;
using VertexBufferHandle = Handle<HwVertexBuffer>;

View File

@@ -279,8 +279,8 @@ public:
break;
}
size_t bpr = bpp * stride;
size_t bprAligned = (bpr + (alignment - 1)) & (~alignment + 1);
size_t const bpr = bpp * stride;
size_t const bprAligned = (bpr + (alignment - 1)) & (~alignment + 1);
return bprAligned * height;
}

View File

@@ -22,6 +22,7 @@
#include <backend/DriverEnums.h>
#include <utils/compiler.h>
#include <utils/Invocable.h>
namespace filament::backend {
@@ -47,6 +48,8 @@ public:
size_t handleArenaSize = 0;
};
Platform() noexcept;
virtual ~Platform() noexcept;
/**
@@ -79,6 +82,85 @@ public:
* thread, or if the platform does not need to perform any special processing.
*/
virtual bool pumpEvents() noexcept;
/**
* InsertBlobFunc is an Invocable to an application-provided function that a
* backend implementation may use to insert a key/value pair into the
* cache.
*/
using InsertBlobFunc = utils::Invocable<
void(const void* key, size_t keySize, const void* value, size_t valueSize)>;
/*
* RetrieveBlobFunc is an Invocable to an application-provided function that a
* backend implementation may use to retrieve a cached value from the
* cache.
*/
using RetrieveBlobFunc = utils::Invocable<
size_t(const void* key, size_t keySize, void* value, size_t valueSize)>;
/**
* Sets the callback functions that the backend can use to interact with caching functionality
* provided by the application.
*
* Cache functions may only be specified once during the lifetime of a
* Platform. The <insert> and <retrieve> Invocables may be called at any time and
* from any thread from the time at which setBlobFunc is called until the time that Platform
* is destroyed. Concurrent calls to these functions from different threads is also allowed.
*
* @param insertBlob an Invocable that inserts a new value into the cache and associates
* it with the given key
* @param retrieveBlob an Invocable that retrieves from the cache the value associated with a
* given key
*/
void setBlobFunc(InsertBlobFunc&& insertBlob, RetrieveBlobFunc&& retrieveBlob) noexcept;
/**
* @return true if setBlobFunc was called.
*/
bool hasBlobFunc() const noexcept;
/**
* To insert a new binary value into the cache and associate it with a given
* key, the backend implementation can call the application-provided callback
* function insertBlob.
*
* No guarantees are made as to whether a given key/value pair is present in
* the cache after the set call. If a different value has been associated
* with the given key in the past then it is undefined which value, if any, is
* associated with the key after the set call. Note that while there are no
* guarantees, the cache implementation should attempt to cache the most
* recently set value for a given key.
*
* @param key pointer to the beginning of the key data that is to be inserted
* @param keySize specifies the size in byte of the data pointed to by <key>
* @param value pointer to the beginning of the value data that is to be inserted
* @param valueSize specifies the size in byte of the data pointed to by <value>
*/
void insertBlob(const void* key, size_t keySize, const void* value, size_t valueSize);
/**
* To retrieve the binary value associated with a given key from the cache, a
* the backend implementation can call the application-provided callback
* function retrieveBlob.
*
* If the cache contains a value for the given key and its size in bytes is
* less than or equal to <valueSize> then the value is written to the memory
* pointed to by <value>. Otherwise nothing is written to the memory pointed
* to by <value>.
*
* @param key pointer to the beginning of the key
* @param keySize specifies the size in bytes of the binary key pointed to by <key>
* @param value pointer to a buffer to receive the cached binary data, if it exists
* @param valueSize specifies the size in bytes of the memory pointed to by <value>
* @return If the cache contains a value associated with the given key then the
* size of that binary value in bytes is returned. Otherwise 0 is returned.
*/
size_t retrieveBlob(const void* key, size_t keySize, void* value, size_t valueSize);
private:
InsertBlobFunc mInsertBlob;
RetrieveBlobFunc mRetrieveBlob;
};
} // namespace filament

View File

@@ -48,7 +48,15 @@ public:
ShaderStageFlags stageFlags = ShaderStageFlags::ALL_SHADER_STAGE_FLAGS;
};
struct Uniform {
utils::CString name; // full qualified name of the uniform field
uint16_t offset; // offset in 'uint32_t' into the uniform buffer
uint8_t size; // >1 for arrays
UniformType type; // uniform type
};
using UniformBlockInfo = std::array<utils::CString, UNIFORM_BINDING_COUNT>;
using UniformInfo = utils::FixedCapacityVector<Uniform>;
using SamplerGroupInfo = std::array<SamplerGroupData, SAMPLER_BINDING_COUNT>;
using ShaderBlob = utils::FixedCapacityVector<uint8_t>;
using ShaderSource = std::array<ShaderBlob, SHADER_TYPE_COUNT>;
@@ -63,6 +71,8 @@ public:
~Program() noexcept;
Program& priorityQueue(CompilerPriorityQueue priorityQueue) noexcept;
// sets the material name and variant for diagnostic purposes only
Program& diagnostics(utils::CString const& name,
utils::Invocable<utils::io::ostream&(utils::io::ostream& out)>&& logger);
@@ -78,6 +88,14 @@ public:
Program& uniformBlockBindings(
utils::FixedCapacityVector<std::pair<utils::CString, uint8_t>> const& uniformBlockBindings) noexcept;
// Note: This is only needed for GLES2.0, this is used to emulate UBO. This function tells
// the program everything it needs to know about the uniforms at a given binding
Program& uniforms(uint32_t index, UniformInfo const& uniforms) noexcept;
// Note: This is only needed for GLES2.0.
Program& attributes(
utils::FixedCapacityVector<std::pair<utils::CString, uint8_t>> attributes) noexcept;
// sets the 'bindingPoint' sampler group descriptor for this program.
// 'samplers' can be destroyed after this call.
// This effectively associates a set of (BindingPoints, index) to a texture unit in the shader.
@@ -93,6 +111,7 @@ public:
Program& specializationConstants(
utils::FixedCapacityVector<SpecializationConstant> specConstants) noexcept;
Program& cacheId(uint64_t cacheId) noexcept;
ShaderSource const& getShadersSource() const noexcept { return mShadersSource; }
ShaderSource& getShadersSource() noexcept { return mShadersSource; }
@@ -103,6 +122,12 @@ public:
SamplerGroupInfo const& getSamplerGroupInfo() const { return mSamplerGroups; }
SamplerGroupInfo& getSamplerGroupInfo() { return mSamplerGroups; }
auto const& getBindingUniformInfo() const { return mBindingUniformInfo; }
auto& getBindingUniformInfo() { return mBindingUniformInfo; }
auto const& getAttributes() const { return mAttributes; }
auto& getAttributes() { return mAttributes; }
utils::CString const& getName() const noexcept { return mName; }
utils::CString& getName() noexcept { return mName; }
@@ -113,6 +138,10 @@ public:
return mSpecializationConstants;
}
uint64_t getCacheId() const noexcept { return mCacheId; }
CompilerPriorityQueue getPriorityQueue() const noexcept { return mPriorityQueue; }
private:
friend utils::io::ostream& operator<<(utils::io::ostream& out, const Program& builder);
@@ -120,8 +149,12 @@ private:
SamplerGroupInfo mSamplerGroups = {};
ShaderSource mShadersSource;
utils::CString mName;
uint64_t mCacheId{};
utils::Invocable<utils::io::ostream&(utils::io::ostream& out)> mLogger;
utils::FixedCapacityVector<SpecializationConstant> mSpecializationConstants;
utils::FixedCapacityVector<std::pair<utils::CString, uint8_t>> mAttributes;
std::array<UniformInfo, Program::UNIFORM_BINDING_COUNT> mBindingUniformInfo;
CompilerPriorityQueue mPriorityQueue = CompilerPriorityQueue::HIGH;
};
} // namespace filament::backend

View File

@@ -95,6 +95,19 @@ public:
*/
virtual void destroySwapChain(SwapChain* swapChain) noexcept = 0;
/**
* Returns the set of buffers that must be preserved up to the call to commit().
* The default value is TargetBufferFlags::NONE.
* The color buffer is always preserved, however ancillary buffers, such as the depth buffer
* are generally discarded. The preserve flags can be used to make sure those ancillary
* buffers are preserved until the call to commit.
*
* @param swapChain
* @return buffer that must be preserved
* @see commit()
*/
virtual TargetBufferFlags getPreservedFlags(SwapChain* swapChain) noexcept;
/**
* Called by the driver to establish the default FBO. The default implementation returns 0.
* @return a GLuint casted to a uint32_t that is an OpenGL framebuffer object.
@@ -254,6 +267,27 @@ public:
* @return Transformed image.
*/
virtual AcquiredImage transformAcquiredImage(AcquiredImage source) noexcept;
// --------------------------------------------------------------------------------------------
/**
* Returns true if additional OpenGL contexts can be created. Default: false.
* @return true if additional OpenGL contexts can be created.
* @see createContext
*/
virtual bool isExtraContextSupported() const noexcept;
/**
* Creates an OpenGL context with the same configuration than the main context and makes it
* current to the current thread. Must not be called from the main driver thread.
* createContext() is only supported if isExtraContextSupported() returns true.
* These additional contexts will be automatically terminated in terminate.
*
* @param shared whether the new context is shared with the main context.
* @see isExtraContextSupported()
* @see terminate()
*/
virtual void createContext(bool shared);
};
} // namespace filament

View File

@@ -50,6 +50,9 @@ protected:
// --------------------------------------------------------------------------------------------
// OpenGLPlatform Interface
bool isExtraContextSupported() const noexcept override;
void createContext(bool shared) override;
void terminate() noexcept override;
SwapChain* createSwapChain(void* nativewindow, uint64_t flags) noexcept override;
@@ -57,6 +60,10 @@ protected:
void destroySwapChain(SwapChain* swapChain) noexcept override;
void makeCurrent(SwapChain* drawSwapChain, SwapChain* readSwapChain) noexcept override;
void commit(SwapChain* swapChain) noexcept override;
OpenGLPlatform::ExternalTexture* createExternalImageTexture() noexcept override;
void destroyExternalImage(ExternalTexture* texture) noexcept override;
void retainExternalImage(void* externalImage) noexcept override;
bool setExternalImage(void* externalImage, ExternalTexture* texture) noexcept override;
private:
PlatformCocoaGLImpl* pImpl = nullptr;

View File

@@ -47,6 +47,9 @@ public:
uint32_t createDefaultRenderTarget() noexcept override;
bool isExtraContextSupported() const noexcept override;
void createContext(bool shared) override;
SwapChain* createSwapChain(void* nativewindow, uint64_t flags) noexcept override;
SwapChain* createSwapChain(uint32_t width, uint32_t height, uint64_t flags) noexcept override;
void destroySwapChain(SwapChain* swapChain) noexcept override;

View File

@@ -26,6 +26,9 @@
#include <backend/DriverEnums.h>
#include <utility>
#include <vector>
namespace filament::backend {
/**
@@ -35,8 +38,31 @@ class PlatformEGL : public OpenGLPlatform {
public:
PlatformEGL() noexcept;
bool isExtraContextSupported() const noexcept override;
void createContext(bool shared) override;
protected:
// --------------------------------------------------------------------------------------------
// Helper for EGL configs and attributes parameters
class Config {
public:
Config();
Config(std::initializer_list<std::pair<EGLint, EGLint>> list);
EGLint& operator[](EGLint name);
EGLint operator[](EGLint name) const;
void erase(EGLint name) noexcept;
EGLint const* data() const noexcept {
return reinterpret_cast<EGLint const*>(mConfig.data());
}
size_t size() const noexcept {
return mConfig.size();
}
private:
std::vector<std::pair<EGLint, EGLint>> mConfig = {{ EGL_NONE, EGL_NONE }};
};
// --------------------------------------------------------------------------------------------
// Platform Interface
@@ -79,6 +105,8 @@ protected:
* @param name a string giving some context on the error. Typically __func__.
*/
static void logEglError(const char* name) noexcept;
static void logEglError(const char* name, EGLint error) noexcept;
static const char* getEglErrorName(EGLint error) noexcept;
/**
* Calls glGetError() to clear the current error flags. logs a warning to log.w if
@@ -98,6 +126,8 @@ protected:
EGLSurface mCurrentReadSurface = EGL_NO_SURFACE;
EGLSurface mEGLDummySurface = EGL_NO_SURFACE;
EGLConfig mEGLConfig = EGL_NO_CONFIG_KHR;
Config mContextAttribs;
std::vector<EGLContext> mAdditionalContexts;
// supported extensions detected at runtime
struct {
@@ -105,13 +135,16 @@ protected:
bool OES_EGL_image_external_essl3 = false;
} gl;
struct {
bool KHR_no_config_context = false;
bool ANDROID_recordable = false;
bool KHR_create_context = false;
bool KHR_gl_colorspace = false;
bool KHR_no_config_context = false;
} egl;
} ext;
private:
void initializeGlExtensions() noexcept;
private:
EGLConfig findSwapChainConfig(uint64_t flags) const;
};

View File

@@ -23,9 +23,10 @@
#include "utils/unwindows.h"
#include <backend/platforms/OpenGLPlatform.h>
#include <backend/DriverEnums.h>
#include <vector>
namespace filament::backend {
/**
@@ -46,6 +47,9 @@ protected:
void terminate() noexcept override;
bool isExtraContextSupported() const noexcept override;
void createContext(bool shared) override;
SwapChain* createSwapChain(void* nativewindow, uint64_t flags) noexcept override;
SwapChain* createSwapChain(uint32_t width, uint32_t height, uint64_t flags) noexcept override;
void destroySwapChain(SwapChain* swapChain) noexcept override;
@@ -57,6 +61,8 @@ protected:
HWND mHWnd = NULL;
HDC mWhdc = NULL;
PIXELFORMATDESCRIPTOR mPfd = {};
std::vector<HGLRC> mAdditionalContexts;
std::vector<int> mAttribs;
};
} // namespace filament::backend

View File

@@ -19,31 +19,220 @@
#include <backend/Platform.h>
#include <bluevk/BlueVK.h>
#include <utils/FixedCapacityVector.h>
#include <utils/PrivateImplementation.h>
#include <tuple>
#include <unordered_set>
namespace filament::backend {
using SwapChain = Platform::SwapChain;
/**
* Private implementation details for the provided vulkan platform.
*/
struct VulkanPlatformPrivate;
/**
* A Platform interface that creates a Vulkan backend.
*/
class VulkanPlatform : public Platform {
class VulkanPlatform : public Platform, utils::PrivateImplementation<VulkanPlatformPrivate> {
public:
struct SurfaceBundle {
void* surface;
// On certain platforms, the extent of the surface cannot be queried from Vulkan. In those
// situations, we allow the frontend to pass in the extent to use in creating the swap
// chains. Platform implementation should set extent to 0 if they do not expect to set the
// swap chain extent.
uint32_t width;
uint32_t height;
/**
* A collection of handles to objects and metadata that comprises a Vulkan context. The client
* can instantiate this struct and pass to Engine::Builder::sharedContext if they wishes to
* share their vulkan context. This is specifically necessary if the client wishes to override
* the swapchain API.
*/
struct VulkanSharedContext {
VkInstance instance = VK_NULL_HANDLE;
VkPhysicalDevice physicalDevice = VK_NULL_HANDLE;
VkDevice logicalDevice = VK_NULL_HANDLE;
uint32_t graphicsQueueFamilyIndex = 0xFFFFFFFF;
// In the usual case, the client needs to allocate at least one more graphics queue
// for Filament, and this index is the param to pass into vkGetDeviceQueue. In the case
// where the gpu only has one graphics queue. Then the client needs to ensure that no
// concurrent access can occur.
uint32_t graphicsQueueIndex = 0xFFFFFFFF;
};
// Given a Vulkan instance and native window handle, creates the platform-specific surface.
virtual SurfaceBundle createVkSurfaceKHR(void* nativeWindow, void* instance,
uint64_t flags) noexcept = 0;
/**
* Shorthand for the pointer to the Platform SwapChain struct, we use it also as a handle (i.e.
* identifier for the swapchain).
*/
using SwapChainPtr = Platform::SwapChain*;
~VulkanPlatform() override;
/**
* Collection of images, formats, and extent (width/height) that defines the swapchain.
*/
struct SwapChainBundle {
utils::FixedCapacityVector<VkImage> colors;
VkImage depth = VK_NULL_HANDLE;
VkFormat colorFormat = VK_FORMAT_UNDEFINED;
VkFormat depthFormat = VK_FORMAT_UNDEFINED;
VkExtent2D extent = {0, 0};
};
VulkanPlatform();
~VulkanPlatform() override;
Driver* createDriver(void* sharedContext,
Platform::DriverConfig const& driverConfig) noexcept override;
int getOSVersion() const noexcept override {
return 0;
}
// ----------------------------------------------------
// ---------- Platform Customization options ----------
/**
* The client preference can be stored within the struct. We allow for two specification of
* preference:
* 1) A substring to match against `VkPhysicalDeviceProperties.deviceName`.
* 2) Index of the device in the list as returned by vkEnumeratePhysicalDevices.
*/
struct GPUPreference {
std::string deviceName;
int8_t index = -1;
};
/**
* Client can provide a preference over the GPU to use in the vulkan instance
* @return `GPUPreference` struct that indicates the client's preference
*/
virtual GPUPreference getPreferredGPU() noexcept {
return {};
}
// -------- End platform customization options --------
// ----------------------------------------------------
/**
* Returns whether the platform supports sRGB swapchain. This is true by default, and the client
* needs to override this method to specify otherwise.
* @return Whether the platform supports sRGB swapchain.
*/
virtual bool isSRGBSwapChainSupported() const {
return true;
}
/**
* Get the images handles and format of the memory backing the swapchain. This should be called
* after createSwapChain() or after recreateIfResized().
* @param swapchain The handle returned by createSwapChain()
* @return An array of VkImages
*/
virtual SwapChainBundle getSwapChainBundle(SwapChainPtr handle);
/**
* Acquire the next image for rendering. The `index` will be written with an non-negative
* integer that the backend can use to index into the `SwapChainBundle.colors` array. The
* corresponding VkImage will be used as the output color attachment. The client should signal
* the `clientSignal` semaphore when the image is ready to be used by the backend.
* @param handle The handle returned by createSwapChain()
* @param clientSignal The semaphore that the client will signal to indicate that the backend
* may render into the image.
* @param index Pointer to memory that will be filled with the index that corresponding
* to an image in the `SwapChainBundle.colors` array.
* @return Result of acquire
*/
virtual VkResult acquire(SwapChainPtr handle, VkSemaphore clientSignal, uint32_t* index);
/**
* Present the image corresponding to `index` to the display. The client should wait on
* `finishedDrawing` before presenting.
* @param handle The handle returned by createSwapChain()
* @param index Index that corresponding to an image in the
* `SwapChainBundle.colors` array.
* @param finishedDrawing Backend passes in a semaphore that the client will signal to
* indicate that the client may render into the image.
* @return Result of present
*/
virtual VkResult present(SwapChainPtr handle, uint32_t index, VkSemaphore finishedDrawing);
/**
* Check if the surface size has changed.
* @param handle The handle returned by createSwapChain()
* @return Whether the swapchain has been resized
*/
virtual bool hasResized(SwapChainPtr handle);
/**
* Carry out a recreation of the swapchain.
* @param handle The handle returned by createSwapChain()
* @return Result of the recreation
*/
virtual VkResult recreate(SwapChainPtr handle);
/**
* Create a swapchain given a platform window, or if given a null `nativeWindow`, then we
* try to create a headless swapchain with the given `extent`.
* @param flags Optional parameters passed to the client as defined in
* Filament::SwapChain.h.
* @param extent Optional width and height that indicates the size of the headless swapchain.
* @return Result of the operation
*/
virtual SwapChainPtr createSwapChain(void* nativeWindow, uint64_t flags = 0,
VkExtent2D extent = {0, 0});
/**
* Destroy the swapchain.
* @param handle The handle returned by createSwapChain()
*/
virtual void destroy(SwapChainPtr handle);
/**
* Clean up any resources owned by the Platform. For example, if the Vulkan instance handle was
* generated by the platform, we need to clean it up in this method.
*/
virtual void terminate();
/**
* @return The instance (VkInstance) for the Vulkan backend.
*/
VkInstance getInstance() const noexcept;
/**
* @return The logical device (VkDevice) that was selected as the backend device.
*/
VkDevice getDevice() const noexcept;
/**
* @return The physical device (i.e gpu) that was selected as the backend physical device.
*/
VkPhysicalDevice getPhysicalDevice() const noexcept;
/**
* @return The family index of the graphics queue selected for the Vulkan backend.
*/
uint32_t getGraphicsQueueFamilyIndex() const noexcept;
/**
* @return The index of the graphics queue (if there are multiple graphics queues)
* selected for the Vulkan backend.
*/
uint32_t getGraphicsQueueIndex() const noexcept;
/**
* @return The queue that was selected for the Vulkan backend.
*/
VkQueue getGraphicsQueue() const noexcept;
private:
// Platform dependent helper methods
using ExtensionSet = std::unordered_set<std::string_view>;
static ExtensionSet getRequiredInstanceExtensions();
using SurfaceBundle = std::tuple<VkSurfaceKHR, VkExtent2D>;
static SurfaceBundle createVkSurfaceKHR(void* nativeWindow, VkInstance instance,
uint64_t flags) noexcept;
friend struct VulkanPlatformPrivate;
};
} // namespace filament::backend
}// namespace filament::backend
#endif //TNT_FILAMENT_BACKEND_PLATFORMS_VULKANPLATFORM_H
#endif// TNT_FILAMENT_BACKEND_PLATFORMS_VULKANPLATFORM_H

View File

@@ -34,6 +34,7 @@ using ParameterPrecision = MaterialBuilder::ParameterPrecision;
using OutputTarget = MaterialBuilder::OutputTarget;
using OutputQualifier = MaterialBuilder::VariableQualifier;
using OutputType = MaterialBuilder::OutputType;
using ConstantType = MaterialBuilder::ConstantType;
// Convenience methods to convert std::string to Enum and also iterate over Enum values.
class Enums {
@@ -77,6 +78,7 @@ private:
static std::unordered_map<std::string, OutputTarget> mStringToOutputTarget;
static std::unordered_map<std::string, OutputQualifier> mStringToOutputQualifier;
static std::unordered_map<std::string, OutputType> mStringToOutputType;
static std::unordered_map<std::string, ConstantType> mStringToConstantType;
};
template<typename T>

View File

@@ -39,6 +39,7 @@
#include <string>
#include <utility>
#include <vector>
#include <variant>
#include <stddef.h>
#include <stdint.h>
@@ -141,13 +142,6 @@ protected:
TargetLanguage targetLanguage;
};
std::vector<CodeGenParams> mCodeGenPermutations;
// For finding properties and running semantic analysis, we always use the same code gen
// permutation. This is the first permutation generated with default arguments passed to matc.
static constexpr const CodeGenParams mSemanticCodeGenParams = {
.shaderModel = ShaderModel::MOBILE,
.targetApi = TargetApi::OPENGL,
.targetLanguage = TargetLanguage::SPIRV
};
// Keeps track of how many times MaterialBuilder::init() has been called without a call to
// MaterialBuilder::shutdown(). Internally, glslang does something similar. We keep track for
@@ -237,11 +231,14 @@ public:
using TransparencyMode = filament::TransparencyMode;
using SpecularAmbientOcclusion = filament::SpecularAmbientOcclusion;
using AttributeType = filament::backend::UniformType;
using UniformType = filament::backend::UniformType;
using ConstantType = filament::backend::ConstantType;
using SamplerType = filament::backend::SamplerType;
using SubpassType = filament::backend::SubpassType;
using SamplerFormat = filament::backend::SamplerFormat;
using ParameterPrecision = filament::backend::Precision;
using Precision = filament::backend::Precision;
using CullingMode = filament::backend::CullingMode;
using FeatureLevel = filament::backend::FeatureLevel;
@@ -270,6 +267,9 @@ public:
};
using PreprocessorDefineList = std::vector<PreprocessorDefine>;
MaterialBuilder& noSamplerValidation(bool enabled) noexcept;
//! Set the name of this material.
MaterialBuilder& name(const char* name) noexcept;
@@ -290,6 +290,15 @@ public:
MaterialBuilder& parameter(const char* name, size_t size, UniformType type,
ParameterPrecision precision = ParameterPrecision::DEFAULT) noexcept;
//! Add a constant parameter to this material.
template<typename T>
using is_supported_constant_parameter_t = typename std::enable_if<
std::is_same<int32_t, T>::value ||
std::is_same<float, T>::value ||
std::is_same<bool, T>::value>::type;
template<typename T, typename = is_supported_constant_parameter_t<T>>
MaterialBuilder& constant(const char *name, ConstantType type, T defaultValue = 0);
/**
* Add a sampler parameter to this material.
*
@@ -390,7 +399,10 @@ public:
MaterialBuilder& featureLevel(FeatureLevel featureLevel) noexcept;
//! Set the blending mode for this material.
/**
* Set the blending mode for this material. When set to MASKED, alpha to coverage is turned on.
* You can override this behavior using alphaToCoverage(false).
*/
MaterialBuilder& blending(BlendingMode blending) noexcept;
/**
@@ -436,6 +448,14 @@ public:
*/
MaterialBuilder& maskThreshold(float threshold) noexcept;
/**
* Enables or disables alpha-to-coverage. When enabled, the coverage of a fragment is based
* on its alpha value. This parameter is only useful when MSAA is in use. Alpha to coverage
* is enabled automatically when the blend mode is set to MASKED; this behavior can be
* overridden by calling alphaToCoverage(false).
*/
MaterialBuilder& alphaToCoverage(bool enable) noexcept;
//! The material output is multiplied by the shadowing factor (UNLIT model only).
MaterialBuilder& shadowMultiplier(bool shadowMultiplier) noexcept;
@@ -556,7 +576,7 @@ public:
MaterialBuilder& shaderDefine(const char* name, const char* value) noexcept;
//! Add a new fragment shader output variable. Only valid for materials in the POST_PROCESS domain.
MaterialBuilder& output(VariableQualifier qualifier, OutputTarget target,
MaterialBuilder& output(VariableQualifier qualifier, OutputTarget target, Precision precision,
OutputType type, const char* name, int location = -1) noexcept;
MaterialBuilder& enableFramebufferFetch() noexcept;
@@ -630,17 +650,28 @@ public:
struct Output {
Output() noexcept = default;
Output(const char* outputName, VariableQualifier qualifier, OutputTarget target,
OutputType type, int location) noexcept
: name(outputName), qualifier(qualifier), target(target), type(type),
location(location) { }
Precision precision, OutputType type, int location) noexcept
: name(outputName), qualifier(qualifier), target(target), precision(precision),
type(type), location(location) { }
utils::CString name;
VariableQualifier qualifier;
OutputTarget target;
Precision precision;
OutputType type;
int location;
};
struct Constant {
utils::CString name;
ConstantType type;
union {
int32_t i;
float f;
bool b;
} defaultValue;
};
static constexpr size_t MATERIAL_PROPERTIES_COUNT = filament::MATERIAL_PROPERTIES_COUNT;
using Property = filament::Property;
@@ -668,6 +699,7 @@ public:
using ParameterList = Parameter[MAX_PARAMETERS_COUNT];
using SubpassList = Parameter[MAX_SUBPASS_COUNT];
using BufferList = std::vector<std::unique_ptr<filament::BufferInterfaceBlock>>;
using ConstantList = std::vector<Constant>;
// returns the number of parameters declared in this material
uint8_t getParameterCount() const noexcept { return mParameterCount; }
@@ -683,22 +715,47 @@ public:
filament::UserVariantFilterMask getVariantFilter() const { return mVariantFilter; }
FeatureLevel getFeatureLevel() const noexcept { return mFeatureLevel; }
/// @endcond
struct Attribute {
std::string_view name;
AttributeType type;
MaterialBuilder::VertexAttribute location;
std::string getAttributeName() const noexcept {
return "mesh_" + std::string{ name };
}
std::string getDefineName() const noexcept {
std::string uppercase{ name };
transform(uppercase.cbegin(), uppercase.cend(), uppercase.begin(), ::toupper);
return "HAS_ATTRIBUTE_" + uppercase;
}
};
using AttributeDatabase = std::array<Attribute, filament::backend::MAX_VERTEX_ATTRIBUTE_COUNT>;
static inline AttributeDatabase const& getAttributeDatabase() noexcept {
return sAttributeDatabase;
}
private:
static const AttributeDatabase sAttributeDatabase;
void prepareToBuild(MaterialInfo& info) noexcept;
// Return true if the shader is syntactically and semantically valid.
// This method finds all the properties defined in the fragment and
// vertex shaders of the material.
bool findAllProperties() noexcept;
bool findAllProperties(CodeGenParams const& semanticCodeGenParams) noexcept;
// Multiple calls to findProperties accumulate the property sets across fragment
// and vertex shaders in mProperties.
bool findProperties(filament::backend::ShaderStage type,
MaterialBuilder::PropertyList& p) noexcept;
MaterialBuilder::PropertyList& allProperties,
CodeGenParams const& semanticCodeGenParams) noexcept;
bool runSemanticAnalysis(MaterialInfo const& info) noexcept;
bool runSemanticAnalysis(MaterialInfo const& info,
CodeGenParams const& semanticCodeGenParams) noexcept;
bool checkLiteRequirements() noexcept;
@@ -751,6 +808,7 @@ private:
PropertyList mProperties;
ParameterList mParameters;
ConstantList mConstants;
SubpassList mSubpasses;
VariableList mVariables;
OutputList mOutputs;
@@ -791,6 +849,8 @@ private:
bool mInstanced = false;
bool mDepthWrite = true;
bool mDepthWriteSet = false;
bool mAlphaToCoverage = false;
bool mAlphaToCoverageSet = false;
bool mSpecularAntiAliasing = false;
bool mClearCoatIorChange = true;
@@ -814,6 +874,8 @@ private:
PreprocessorDefineList mDefines;
filament::UserVariantFilterMask mVariantFilter = {};
bool mNoSamplerValidation = false;
};
} // namespace filamat

View File

@@ -58,6 +58,10 @@ class Texture;
class UTILS_PUBLIC IBLPrefilterContext {
public:
enum class Kernel : uint8_t {
D_GGX, // Trowbridge-reitz distribution
};
/**
* Creates an IBLPrefilter context.
* @param engine filament engine to use
@@ -109,7 +113,7 @@ public:
* - Must be allocated with all mip levels.
* - Must be SAMPLEABLE
* @param outCubemap Output cubemap. If null the texture is automatically created
* with default parameters (size of 256 with 5 levels).
* with default parameters (size of 256 with 9 levels).
* - Must be a cubemap
* - Must have SAMPLEABLE and COLOR_ATTACHMENT usage bits
* @return returns outCubemap
@@ -123,6 +127,100 @@ public:
filament::Material* mEquirectMaterial = nullptr;
};
/**
* IrradianceFilter is a GPU based implementation of the diffuse probe pre-integration filter.
* An instance of IrradianceFilter is needed per filter configuration. A filter configuration
* contains the filter's kernel and sample count.
*/
class IrradianceFilter {
public:
using Kernel = Kernel;
/**
* Filter configuration.
*/
struct Config {
uint16_t sampleCount = 1024u; //!< filter sample count (max 2048)
Kernel kernel = Kernel::D_GGX; //!< filter kernel
};
/**
* Filtering options for the current environment.
*/
struct Options {
float hdrLinear = 1024.0f; //!< no HDR compression up to this value
float hdrMax = 16384.0f; //!< HDR compression between hdrLinear and hdrMax
float lodOffset = 2.0f; //!< Good values are 2.0 or 3.0. Higher values help with heavily HDR inputs.
bool generateMipmap = true; //!< set to false if the input environment map already has mipmaps
};
/**
* Creates a IrradianceFilter processor.
* @param context IBLPrefilterContext to use
* @param config Configuration of the filter
*/
IrradianceFilter(IBLPrefilterContext& context, Config config);
/**
* Creates a filter with the default configuration.
* @param context IBLPrefilterContext to use
*/
explicit IrradianceFilter(IBLPrefilterContext& context);
/**
* Destroys all GPU resources created during initialization.
*/
~IrradianceFilter() noexcept;
IrradianceFilter(IrradianceFilter const&) = delete;
IrradianceFilter& operator=(IrradianceFilter const&) = delete;
IrradianceFilter(IrradianceFilter&& rhs) noexcept;
IrradianceFilter& operator=(IrradianceFilter&& rhs) noexcept;
/**
* Generates an irradiance cubemap. Mipmaps are not generated even if present.
* @param options Options for this environment
* @param environmentCubemap Environment cubemap (input). Can't be null.
* This cubemap must be SAMPLEABLE and must have all its
* levels allocated. If Options.generateMipmap is true,
* the mipmap levels will be overwritten, otherwise
* it is assumed that all levels are correctly initialized.
* @param outIrradianceTexture Output irradiance texture or, if null, it is
* automatically created with some default parameters.
* outIrradianceTexture must be a cubemap, it must have
* at least COLOR_ATTACHMENT and SAMPLEABLE usages.
*
* @return returns outIrradianceTexture
*/
filament::Texture* operator()(Options options,
filament::Texture const* environmentCubemap,
filament::Texture* outIrradianceTexture = nullptr);
/**
* Generates a prefiltered cubemap.
* @param environmentCubemap Environment cubemap (input). Can't be null.
* This cubemap must be SAMPLEABLE and must have all its
* levels allocated. If Options.generateMipmap is true,
* the mipmap levels will be overwritten, otherwise
* it is assumed that all levels are correctly initialized.
* @param outIrradianceTexture Output irradiance texture or, if null, it is
* automatically created with some default parameters.
* outIrradianceTexture must be a cubemap, it must have
* at least COLOR_ATTACHMENT and SAMPLEABLE usages.
*
* @return returns outReflectionsTexture
*/
filament::Texture* operator()(
filament::Texture const* environmentCubemap,
filament::Texture* outIrradianceTexture = nullptr);
private:
filament::Texture* createIrradianceTexture();
IBLPrefilterContext& mContext;
filament::Material* mKernelMaterial = nullptr;
filament::Texture* mKernelTexture = nullptr;
uint32_t mSampleCount = 0u;
};
/**
* SpecularFilter is a GPU based implementation of the specular probe pre-integration filter.
@@ -131,9 +229,7 @@ public:
*/
class SpecularFilter {
public:
enum class Kernel : uint8_t {
D_GGX, // Trowbridge-reitz distribution
};
using Kernel = Kernel;
/**
* Filter configuration.
@@ -151,7 +247,7 @@ public:
float hdrLinear = 1024.0f; //!< no HDR compression up to this value
float hdrMax = 16384.0f; //!< HDR compression between hdrLinear and hdrMax
float lodOffset = 1.0f; //!< Good values are 1.0 or 2.0. Higher values help with heavily HDR inputs.
bool generateMipmap = true; //!< set to false if the environment map already has mipmaps
bool generateMipmap = true; //!< set to false if the input environment map already has mipmaps
};
/**
@@ -237,6 +333,7 @@ private:
utils::Entity mCameraEntity{};
filament::View* mView{};
filament::Material* mIntegrationMaterial{};
filament::Material* mIrradianceIntegrationMaterial{};
};
#endif //TNT_IBL_PREFILTER_IBLPREFILTER_H

View File

@@ -104,22 +104,24 @@ public:
}
/**
* Computes the bounding box of a box transformed by a rigid transform
* Transform a Box by a linear transform and a translation.
*
* @param m a 3x3 matrix, the linear transform
* @param t a float3, the translation
* @param box the box to transform
* @param m a 4x4 matrix that must be a rigid transform
* @return the bounding box of the transformed box.
* Result is undefined if \p m is not a rigid transform
* @return the bounding box of the transformed box
*/
friend Box rigidTransform(Box const& box, const math::mat4f& m) noexcept;
static Box transform(const math::mat3f& m, math::float3 const& t, const Box& box) noexcept {
return { m * box.center + t, abs(m) * box.halfExtent };
}
/**
* Computes the bounding box of a box transformed by a rigid transform
* @param box the box to transform
* @param m a 3x3 matrix that must be a rigid transform
* @return the bounding box of the transformed box.
* Result is undefined if \p m is not a rigid transform
* @deprecated Use transform() instead
* @see transform()
*/
friend Box rigidTransform(Box const& box, const math::mat3f& m) noexcept;
friend Box rigidTransform(Box const& box, const math::mat4f& m) noexcept {
return transform(m.upperLeft(), m[3].xyz, box);
}
};
/**
@@ -174,7 +176,18 @@ struct UTILS_PUBLIC Aabb {
/**
* Returns the 8 corner vertices of the AABB.
*/
Corners getCorners() const;
Corners getCorners() const {
return Aabb::Corners{ .vertices = {
{ min.x, min.y, min.z },
{ max.x, min.y, min.z },
{ min.x, max.y, min.z },
{ max.x, max.y, min.z },
{ min.x, min.y, max.z },
{ max.x, min.y, max.z },
{ min.x, max.y, max.z },
{ max.x, max.y, max.z },
}};
}
/**
* Returns whether the box contains a given point.
@@ -182,15 +195,44 @@ struct UTILS_PUBLIC Aabb {
* @param p the point to test
* @return the maximum signed distance to the box. Negative if p is in the box
*/
float contains(math::float3 p) const noexcept;
float contains(math::float3 p) const noexcept {
float d = min.x - p.x;
d = std::max(d, min.y - p.y);
d = std::max(d, min.z - p.z);
d = std::max(d, p.x - max.x);
d = std::max(d, p.y - max.y);
d = std::max(d, p.z - max.z);
return d;
}
/**
* Applies an affine transformation to the AABB.
*
* @param m the 4x4 transformation to apply
* @param m the 3x3 transformation to apply
* @param t the translation
* @return the transformed box
*/
Aabb transform(const math::mat4f& m) const noexcept;
static Aabb transform(const math::mat3f& m, math::float3 const& t, const Aabb& box) noexcept {
// Fast AABB transformation per Jim Arvo in Graphics Gems (1990).
Aabb result{ t, t };
for (size_t col = 0; col < 3; ++col) {
for (size_t row = 0; row < 3; ++row) {
const float a = m[col][row] * box.min[col];
const float b = m[col][row] * box.max[col];
result.min[row] += a < b ? a : b;
result.max[row] += a < b ? b : a;
}
}
return result;
}
/**
* @deprecated Use transform() instead
* @see transform()
*/
Aabb transform(const math::mat4f& m) const noexcept {
return transform(m.upperLeft(), m[3].xyz, *this);
}
};
} // namespace filament

View File

@@ -191,7 +191,7 @@ private:
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* // Declares a "linear sRGB" color space.
* ColorSpace myColorSpace = Rec709-Linear-sRGB;
* ColorSpace myColorSpace = Rec709-Linear-D65;
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*/
class PartialColorSpace {

View File

@@ -17,6 +17,8 @@
#ifndef TNT_FILAMENT_ENGINE_H
#define TNT_FILAMENT_ENGINE_H
#include <filament/FilamentAPI.h>
#include <backend/Platform.h>
#include <utils/compiler.h>
@@ -49,6 +51,7 @@ class SwapChain;
class Texture;
class VertexBuffer;
class View;
class InstanceBuffer;
class LightManager;
class RenderableManager;
@@ -164,6 +167,7 @@ class TransformManager;
* @see Renderer
*/
class UTILS_PUBLIC Engine {
struct BuilderDetails;
public:
using Platform = backend::Platform;
using Backend = backend::Backend;
@@ -265,96 +269,124 @@ public:
uint32_t perFrameCommandsSizeMB = FILAMENT_PER_FRAME_COMMANDS_SIZE_IN_MB;
};
#if UTILS_HAS_THREADING
using CreateCallback = void(void* user, void* token);
#endif
/**
* Creates an instance of Engine
*
* @param backend Which driver backend to use.
*
* @param platform A pointer to an object that implements Platform. If this is
* provided, then this object is used to create the hardware context
* and expose platform features to it.
*
* If not provided (or nullptr is used), an appropriate Platform
* is created automatically.
*
* All methods of this interface are called from filament's
* render thread, which is different from the main thread.
*
* The lifetime of \p platform must exceed the lifetime of
* the Engine object.
*
* @param sharedGLContext A platform-dependant OpenGL context used as a shared context
* when creating filament's internal context.
* Setting this parameter will force filament to use the OpenGL
* implementation (instead of Vulkan for instance).
*
* @param config A pointer to optional parameters to specify memory size
* configuration options. If nullptr, then defaults used.
*
* @return A pointer to the newly created Engine, or nullptr if the Engine couldn't be created.
*
* nullptr if the GPU driver couldn't be initialized, for instance if it doesn't
* support the right version of OpenGL or OpenGL ES.
*
* @exception utils::PostConditionPanic can be thrown if there isn't enough memory to
* allocate the command buffer. If exceptions are disabled, this condition if fatal and
* this function will abort.
*
* \remark
* This method is thread-safe.
* Engine::Builder is used to create a new filament Engine.
*/
static Engine* create(Backend backend = Backend::DEFAULT,
Platform* platform = nullptr, void* sharedGLContext = nullptr,
const Config* config = nullptr);
class Builder : public BuilderBase<BuilderDetails> {
friend struct BuilderDetails;
friend class FEngine;
public:
Builder() noexcept;
Builder(Builder const& rhs) noexcept;
Builder(Builder&& rhs) noexcept;
~Builder() noexcept;
Builder& operator=(Builder const& rhs) noexcept;
Builder& operator=(Builder&& rhs) noexcept;
/**
* @param backend Which driver backend to use
* @return A reference to this Builder for chaining calls.
*/
Builder& backend(Backend backend) noexcept;
/**
* @param platform A pointer to an object that implements Platform. If this is
* provided, then this object is used to create the hardware context
* and expose platform features to it.
*
* If not provided (or nullptr is used), an appropriate Platform
* is created automatically.
*
* All methods of this interface are called from filament's
* render thread, which is different from the main thread.
*
* The lifetime of \p platform must exceed the lifetime of
* the Engine object.
*
* @return A reference to this Builder for chaining calls.
*/
Builder& platform(Platform* platform) noexcept;
/**
* @param config A pointer to optional parameters to specify memory size
* configuration options. If nullptr, then defaults used.
*
* @return A reference to this Builder for chaining calls.
*/
Builder& config(const Config* config) noexcept;
/**
* @param sharedContext A platform-dependant context used as a shared context
* when creating filament's internal context.
*
* @return A reference to this Builder for chaining calls.
*/
Builder& sharedContext(void* sharedContext) noexcept;
#if UTILS_HAS_THREADING
/**
* Creates the filament Engine asynchronously.
*
* @param callback Callback called once the engine is initialized and it is safe to
* call Engine::getEngine().
*/
void build(utils::Invocable<void(void* token)>&& callback) const;
#endif
/**
* Creates an instance of Engine.
*
* @return A pointer to the newly created Engine, or nullptr if the Engine couldn't be
* created.
* nullptr if the GPU driver couldn't be initialized, for instance if it doesn't
* support the right version of OpenGL or OpenGL ES.
*
* @exception utils::PostConditionPanic can be thrown if there isn't enough memory to
* allocate the command buffer. If exceptions are disabled, this condition if
* fatal and this function will abort.
*/
Engine* build() const;
};
/**
* Backward compatibility helper to create an Engine.
* @see Builder
*/
static inline Engine* create(Backend backend = Backend::DEFAULT,
Platform* platform = nullptr, void* sharedContext = nullptr,
const Config* config = nullptr) {
return Engine::Builder()
.backend(backend)
.platform(platform)
.sharedContext(sharedContext)
.config(config)
.build();
}
#if UTILS_HAS_THREADING
/**
* A callback used with Engine::createAsync() called once the engine is initialized and it is
* safe to call Engine::getEngine(token). This callback is invoked from an arbitrary worker
* thread. Engine::getEngine() CANNOT be called from that thread, instead it must be called
* from the same thread than Engine::createAsync() was called from.
*
* @param user User provided parameter given in createAsync().
*
* @param token An opaque token used to call Engine::getEngine().
* Backward compatibility helper to create an Engine asynchronously.
* @see Builder
*/
using CreateCallback = void(void* user, void* token);
/**
* Creates an instance of Engine asynchronously
*
* @param callback Callback called once the engine is initialized and it is safe to
* call Engine::getEngine.
*
* @param user A user provided pointer that is given back to callback unmodified.
*
* @param backend Which driver backend to use.
*
* @param platform A pointer to an object that implements Platform. If this is
* provided, then this object is used to create the hardware context
* and expose platform features to it.
*
* If not provided (or nullptr is used), an appropriate Platform
* is created automatically.
*
* All methods of this interface are called from filament's
* render thread, which is different from the main thread.
*
* The lifetime of \p platform must exceed the lifetime of
* the Engine object.
*
* @param sharedGLContext A platform-dependant OpenGL context used as a shared context
* when creating filament's internal context.
* Setting this parameter will force filament to use the OpenGL
* implementation (instead of Vulkan for instance).
*
* @param config A pointer to optional parameters to specify memory size
* configuration options
*/
static void createAsync(CreateCallback callback, void* user,
static inline void createAsync(CreateCallback callback, void* user,
Backend backend = Backend::DEFAULT,
Platform* platform = nullptr, void* sharedGLContext = nullptr,
const Config* config = nullptr);
Platform* platform = nullptr, void* sharedContext = nullptr,
const Config* config = nullptr) {
Engine::Builder()
.backend(backend)
.platform(platform)
.sharedContext(sharedContext)
.config(config)
.build([callback, user](void* token) {
callback(user, token);
});
}
/**
* Retrieve an Engine* from createAsync(). This must be called from the same thread than
@@ -371,6 +403,7 @@ public:
static Engine* getEngine(void* token);
#endif
/**
* Destroy the Engine instance and all associated resources.
*
@@ -464,6 +497,21 @@ public:
*/
FeatureLevel getActiveFeatureLevel() const noexcept;
/**
* Queries the maximum number of GPU instances that Filament creates when automatic instancing
* is enabled. This value is also the limit for the number of transforms that can be stored in
* an InstanceBuffer. This value may depend on the device and platform, but will remain constant
* during the lifetime of this Engine.
*
* This value does not apply when using the instances(size_t) method on
* RenderableManager::Builder.
*
* @return the number of max automatic instances
* @see setAutomaticInstancingEnabled
* @see RenderableManager::Builder::instances(size_t)
* @see RenderableManager::Builder::instances(size_t, InstanceBuffer*)
*/
size_t getMaxAutomaticInstances() const noexcept;
/**
* @return EntityManager used by filament
@@ -625,8 +673,28 @@ public:
bool destroy(const Texture* p); //!< Destroys a Texture object.
bool destroy(const RenderTarget* p); //!< Destroys a RenderTarget object.
bool destroy(const View* p); //!< Destroys a View object.
bool destroy(const InstanceBuffer* p); //!< Destroys an InstanceBuffer object.
void destroy(utils::Entity e); //!< Destroys all filament-known components from this entity
bool isValid(const BufferObject* p); //!< Tells whether a BufferObject object is valid
bool isValid(const VertexBuffer* p); //!< Tells whether an VertexBuffer object is valid
bool isValid(const Fence* p); //!< Tells whether a Fence object is valid
bool isValid(const IndexBuffer* p); //!< Tells whether an IndexBuffer object is valid
bool isValid(const SkinningBuffer* p); //!< Tells whether a SkinningBuffer object is valid
bool isValid(const MorphTargetBuffer* p); //!< Tells whether a MorphTargetBuffer object is valid
bool isValid(const IndirectLight* p); //!< Tells whether an IndirectLight object is valid
bool isValid(const Material* p); //!< Tells whether an IndirectLight object is valid
bool isValid(const Renderer* p); //!< Tells whether a Renderer object is valid
bool isValid(const Scene* p); //!< Tells whether a Scene object is valid
bool isValid(const Skybox* p); //!< Tells whether a SkyBox object is valid
bool isValid(const ColorGrading* p); //!< Tells whether a ColorGrading object is valid
bool isValid(const SwapChain* p); //!< Tells whether a SwapChain object is valid
bool isValid(const Stream* p); //!< Tells whether a Stream object is valid
bool isValid(const Texture* p); //!< Tells whether a Texture object is valid
bool isValid(const RenderTarget* p); //!< Tells whether a RenderTarget object is valid
bool isValid(const View* p); //!< Tells whether a View object is valid
bool isValid(const InstanceBuffer* p); //!< Tells whether an InstanceBuffer object is valid
/**
* Kicks the hardware thread (e.g. the OpenGL, Vulkan or Metal thread) and blocks until
* all commands to this point are executed. Note that does guarantee that the

View File

@@ -0,0 +1,98 @@
/*
* Copyright (C) 2023 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef TNT_FILAMENT_INSTANCEBUFFER_H
#define TNT_FILAMENT_INSTANCEBUFFER_H
#include <filament/FilamentAPI.h>
#include <filament/Engine.h>
#include <math/mathfwd.h>
namespace filament {
/**
* InstanceBuffer holds draw (GPU) instance transforms. These can be provided to a renderable to
* "offset" each draw instance.
*
* @see RenderableManager::Builder::instances(size_t, InstanceBuffer*)
*/
class UTILS_PUBLIC InstanceBuffer : public FilamentAPI {
struct BuilderDetails;
public:
class Builder : public BuilderBase<BuilderDetails> {
friend struct BuilderDetails;
public:
/**
* @param instanceCount the number of instances this InstanceBuffer will support, must be
* >= 1 and <= \c Engine::getMaxAutomaticInstances()
* @see Engine::getMaxAutomaticInstances
*/
Builder(size_t instanceCount) noexcept;
Builder(Builder const& rhs) noexcept;
Builder(Builder&& rhs) noexcept;
~Builder() noexcept;
Builder& operator=(Builder const& rhs) noexcept;
Builder& operator=(Builder&& rhs) noexcept;
/**
* Provide an initial local transform for each instance. Each local transform is relative to
* the transform of the associated renderable. This forms a parent-child relationship
* between the renderable and its instances, so adjusting the renderable's transform will
- * affect all instances.
*
* The array of math::mat4f must have length instanceCount, provided when constructing this
* Builder.
*
* @param localTransforms an array of math::mat4f with length instanceCount, must remain
* valid until after build() is called
*/
Builder& localTransforms(math::mat4f const* localTransforms) noexcept;
/**
* Creates the InstanceBuffer object and returns a pointer to it.
*/
InstanceBuffer* build(Engine& engine);
private:
friend class FInstanceBuffer;
};
/**
* Returns the instance count specified when building this InstanceBuffer.
*/
size_t getInstanceCount() const noexcept;
/**
* Sets the local transform for each instance. Each local transform is relative to the transform
* of the associated renderable. This forms a parent-child relationship between the renderable
* and its instances, so adjusting the renderable's transform will affect all instances.
*
* @param localTransforms an array of math::mat4f with length count, need not outlive this call
* @param count the number of local transforms
* @param offset index of the first instance to set local transforms
*/
void setLocalTransforms(math::mat4f const* localTransforms, size_t count, size_t offset = 0);
};
} // namespace filament
#endif //TNT_FILAMENT_INSTANCEBUFFER_H

View File

@@ -22,9 +22,11 @@
#include <filament/MaterialEnums.h>
#include <filament/MaterialInstance.h>
#include <backend/CallbackHandler.h>
#include <backend/DriverEnums.h>
#include <utils/compiler.h>
#include <utils/Invocable.h>
#include <math/mathfwd.h>
@@ -105,6 +107,34 @@ public:
*/
Builder& package(const void* payload, size_t size);
template<typename T>
using is_supported_constant_parameter_t = typename std::enable_if<
std::is_same<int32_t, T>::value ||
std::is_same<float, T>::value ||
std::is_same<bool, T>::value>::type;
/**
* Specialize a constant parameter specified in the material definition with a concrete
* value for this material. Once build() is called, this constant cannot be changed.
* Will throw an exception if the name does not match a constant specified in the
* material definition or if the type provided does not match.
*
* @tparam T The type of constant parameter, either int32_t, float, or bool.
* @param name The name of the constant parameter specified in the material definition, such
* as "myConstant".
* @param nameLength Length in `char` of the name parameter.
* @param value The value to use for the constant parameter, must match the type specified
* in the material definition.
*/
template<typename T, typename = is_supported_constant_parameter_t<T>>
Builder& constant(const char* name, size_t nameLength, T value);
/** inline helper to provide the constant name as a null-terminated C string */
template<typename T, typename = is_supported_constant_parameter_t<T>>
inline Builder& constant(const char* name, T value) {
return constant(name, strlen(name), value);
}
/**
* Creates the Material object and returns a pointer to it.
*
@@ -122,6 +152,60 @@ public:
friend class FMaterial;
};
using CompilerPriorityQueue = backend:: CompilerPriorityQueue;
/**
* Asynchronously ensures that a subset of this Material's variants are compiled. After issuing
* several Material::compile() calls in a row, it is recommended to call Engine::flush()
* such that the backend can start the compilation work as soon as possible.
* The provided callback is guaranteed to be called on the main thread after all specified
* variants of the material are compiled. This can take hundreds of milliseconds.
*
* If all the material's variants are already compiled, the callback will be scheduled as
* soon as possible, but this might take a few dozen millisecond, corresponding to how
* many previous frames are enqueued in the backend. This also varies by backend. Therefore,
* it is recommended to only call this method once per material shortly after creation.
*
* If the same variant is scheduled for compilation multiple times, the first scheduling
* takes precedence; later scheduling are ignored.
*
* caveat: A consequence is that if a variant is scheduled on the low priority queue and later
* scheduled again on the high priority queue, the later scheduling is ignored.
* Therefore, the second callback could be called before the variant is compiled.
* However, the first callback, if specified, will trigger as expected.
*
* The callback is guaranteed to be called. If the engine is destroyed while some material
* variants are still compiling or in the queue, these will be discarded and the corresponding
* callback will be called. In that case however the Material pointer passed to the callback
* is guaranteed to be invalid (either because it's been destroyed by the user already, or,
* because it's been cleaned-up by the Engine).
*
* @param priority Which priority queue to use, LOW or HIGH.
* @param variants Variants to include to the compile command.
* @param handler Handler to dispatch the callback or nullptr for the default handler
* @param callback callback called on the main thread when the compilation is done on
* by backend.
*/
void compile(CompilerPriorityQueue priority,
UserVariantFilterMask variants,
backend::CallbackHandler* handler = nullptr,
utils::Invocable<void(Material*)>&& callback = {}) noexcept;
inline void compile(CompilerPriorityQueue priority,
UserVariantFilterBit variants,
backend::CallbackHandler* handler = nullptr,
utils::Invocable<void(Material*)>&& callback = {}) noexcept {
compile(priority, UserVariantFilterMask(variants), handler,
std::forward<utils::Invocable<void(Material*)>>(callback));
}
inline void compile(CompilerPriorityQueue priority,
backend::CallbackHandler* handler = nullptr,
utils::Invocable<void(Material*)>&& callback = {}) noexcept {
compile(priority, UserVariantFilterBit::ALL, handler,
std::forward<utils::Invocable<void(Material*)>>(callback));
}
/**
* Creates a new instance of this material. Material instances should be freed using
* Engine::destroy(const MaterialInstance*).
@@ -171,6 +255,9 @@ public:
//! Indicates whether this material is double-sided.
bool isDoubleSided() const noexcept;
//! Indicates whether this material uses alpha to coverage.
bool isAlphaToCoverageEnabled() const noexcept;
//! Returns the alpha mask threshold used when the blending mode is set to masked.
float getMaskThreshold() const noexcept;

View File

@@ -47,10 +47,14 @@ enum UTILS_PUBLIC ChunkType : uint64_t {
MaterialShaderModels = charTo64bitNum("MAT_SMDL"),
MaterialSamplerBindings = charTo64bitNum("MAT_SAMP"),
MaterialUniformBindings = charTo64bitNum("MAT_UNIF"),
MaterialBindingUniformInfo = charTo64bitNum("MAT_UFRM"),
MaterialAttributeInfo = charTo64bitNum("MAT_ATTR"),
MaterialProperties = charTo64bitNum("MAT_PROP"),
MaterialConstants = charTo64bitNum("MAT_CONS"),
MaterialName = charTo64bitNum("MAT_NAME"),
MaterialVersion = charTo64bitNum("MAT_VERS"),
MaterialCacheId = charTo64bitNum("MAT_UUID"),
MaterialFeatureLevel = charTo64bitNum("MAT_FEAT"),
MaterialShading = charTo64bitNum("MAT_SHAD"),
MaterialBlendingMode = charTo64bitNum("MAT_BLEN"),
@@ -67,15 +71,17 @@ enum UTILS_PUBLIC ChunkType : uint64_t {
MaterialReflectionMode = charTo64bitNum("MAT_REFL"),
MaterialRequiredAttributes = charTo64bitNum("MAT_REQA"),
MaterialDepthWriteSet = charTo64bitNum("MAT_DEWS"),
MaterialDoubleSidedSet = charTo64bitNum("MAT_DOSS"),
MaterialDoubleSided = charTo64bitNum("MAT_DOSI"),
MaterialColorWrite = charTo64bitNum("MAT_CWRIT"),
MaterialDepthWriteSet = charTo64bitNum("MAT_DEWS"),
MaterialDepthWrite = charTo64bitNum("MAT_DWRIT"),
MaterialDepthTest = charTo64bitNum("MAT_DTEST"),
MaterialInstanced = charTo64bitNum("MAT_INSTA"),
MaterialCullingMode = charTo64bitNum("MAT_CUMO"),
MaterialAlphaToCoverageSet = charTo64bitNum("MAT_A2CS"),
MaterialAlphaToCoverage = charTo64bitNum("MAT_A2CO"),
MaterialHasCustomDepthShader =charTo64bitNum("MAT_CSDP"),

View File

@@ -20,6 +20,7 @@
#define TNT_FILAMENT_MATERIAL_ENUM_H
#include <utils/bitset.h>
#include <utils/BitmaskEnum.h>
#include <stddef.h>
#include <stdint.h>
@@ -27,7 +28,7 @@
namespace filament {
// update this when a new version of filament wouldn't work with older materials
static constexpr size_t MATERIAL_VERSION = 31;
static constexpr size_t MATERIAL_VERSION = 41;
/**
* Supported shading models
@@ -232,7 +233,9 @@ enum class Property : uint8_t {
// when adding new Properties, make sure to update MATERIAL_PROPERTIES_COUNT
};
enum class UserVariantFilterBit : uint32_t {
using UserVariantFilterMask = uint32_t;
enum class UserVariantFilterBit : UserVariantFilterMask {
DIRECTIONAL_LIGHTING = 0x01,
DYNAMIC_LIGHTING = 0x02,
SHADOW_RECEIVER = 0x04,
@@ -240,10 +243,12 @@ enum class UserVariantFilterBit : uint32_t {
FOG = 0x10,
VSM = 0x20,
SSR = 0x40,
ALL = 0x7F,
};
using UserVariantFilterMask = uint32_t;
} // namespace filament
template<> struct utils::EnableBitMaskOperators<filament::UserVariantFilterBit>
: public std::true_type {};
#endif

View File

@@ -52,6 +52,7 @@ class UTILS_PUBLIC MaterialInstance : public FilamentAPI {
public:
using CullingMode = filament::backend::CullingMode;
using TransparencyMode = filament::TransparencyMode;
using DepthFunc = filament::backend::SamplerCompareFunc;
using StencilCompareFunc = filament::backend::SamplerCompareFunc;
using StencilOperation = filament::backend::StencilOperation;
using StencilFace = filament::backend::StencilFace;
@@ -367,6 +368,16 @@ public:
*/
void setDepthCulling(bool enable) noexcept;
/**
* Overrides the default depth function state that was set on the material.
*/
void setDepthFunc(DepthFunc depthFunc) noexcept;
/**
* Returns the depth function state.
*/
DepthFunc getDepthFunc() const noexcept;
/**
* Returns whether depth culling is enabled.
*/

View File

@@ -21,6 +21,8 @@
#include <stdint.h>
#include <math.h>
namespace filament {
class Texture;
@@ -151,19 +153,120 @@ struct BloomOptions {
};
/**
* Options to control fog in the scene
* Options to control large-scale fog in the scene
*/
struct FogOptions {
float distance = 0.0f; //!< distance in world units from the camera where the fog starts ( >= 0.0 )
float maximumOpacity = 1.0f; //!< fog's maximum opacity between 0 and 1
float height = 0.0f; //!< fog's floor in world units
float heightFalloff = 1.0f; //!< how fast fog dissipates with altitude
LinearColor color = {0.5f, 0.5f, 0.5f};//!< fog's color (linear), see fogColorFromIbl
float density = 0.1f; //!< fog's density at altitude given by 'height'
float inScatteringStart = 0.0f; //!< distance in world units from the camera where in-scattering starts
float inScatteringSize = -1.0f; //!< size of in-scattering (>0 to activate). Good values are >> 1 (e.g. ~10 - 100).
bool fogColorFromIbl = false; //!< Fog color will be modulated by the IBL color in the view direction.
bool enabled = false; //!< enable or disable fog
/**
* Distance in world units [m] from the camera to where the fog starts ( >= 0.0 )
*/
float distance = 0.0f;
/**
* Distance in world units [m] after which the fog calculation is disabled.
* This can be used to exclude the skybox, which is desirable if it already contains clouds or
* fog. The default value is +infinity which applies the fog to everything.
*
* Note: The SkyBox is typically at a distance of 1e19 in world space (depending on the near
* plane distance and projection used though).
*/
float cutOffDistance = INFINITY;
/**
* fog's maximum opacity between 0 and 1
*/
float maximumOpacity = 1.0f;
/**
* Fog's floor in world units [m]. This sets the "sea level".
*/
float height = 0.0f;
/**
* How fast the fog dissipates with altitude. heightFalloff has a unit of [1/m].
* It can be expressed as 1/H, where H is the altitude change in world units [m] that causes a
* factor 2.78 (e) change in fog density.
*
* A falloff of 0 means the fog density is constant everywhere and may result is slightly
* faster computations.
*/
float heightFalloff = 1.0f;
/**
* Fog's color is used for ambient light in-scattering, a good value is
* to use the average of the ambient light, possibly tinted towards blue
* for outdoors environments. Color component's values should be between 0 and 1, values
* above one are allowed but could create a non energy-conservative fog (this is dependant
* on the IBL's intensity as well).
*
* We assume that our fog has no absorption and therefore all the light it scatters out
* becomes ambient light in-scattering and has lost all directionality, i.e.: scattering is
* isotropic. This somewhat simulates Rayleigh scattering.
*
* This value is used as a tint instead, when fogColorFromIbl is enabled.
*
* @see fogColorFromIbl
*/
LinearColor color = { 1.0f, 1.0f, 1.0f };
/**
* Extinction factor in [1/m] at altitude 'height'. The extinction factor controls how much
* light is absorbed and out-scattered per unit of distance. Each unit of extinction reduces
* the incoming light to 37% of its original value.
*
* Note: The extinction factor is related to the fog density, it's usually some constant K times
* the density at sea level (more specifically at fog height). The constant K depends on
* the composition of the fog/atmosphere.
*
* For historical reason this parameter is called `density`.
*/
float density = 0.1f;
/**
* Distance in world units [m] from the camera where the Sun in-scattering starts.
*/
float inScatteringStart = 0.0f;
/**
* Very inaccurately simulates the Sun's in-scattering. That is, the light from the sun that
* is scattered (by the fog) towards the camera.
* Size of the Sun in-scattering (>0 to activate). Good values are >> 1 (e.g. ~10 - 100).
* Smaller values result is a larger scattering size.
*/
float inScatteringSize = -1.0f;
/**
* The fog color will be sampled from the IBL in the view direction and tinted by `color`.
* Depending on the scene this can produce very convincing results.
*
* This simulates a more anisotropic phase-function.
*
* `fogColorFromIbl` is ignored when skyTexture is specified.
*
* @see skyColor
*/
bool fogColorFromIbl = false;
/**
* skyTexture must be a mipmapped cubemap. When provided, the fog color will be sampled from
* this texture, higher resolution mip levels will be used for objects at the far clip plane,
* and lower resolution mip levels for objects closer to the camera. The skyTexture should
* typically be heavily blurred; a typical way to produce this texture is to blur the base
* level with a strong gaussian filter or even an irradiance filter and then generate mip
* levels as usual. How blurred the base level is somewhat of an artistic decision.
*
* This simulates a more anisotropic phase-function.
*
* `fogColorFromIbl` is ignored when skyTexture is specified.
*
* @see Texture
* @see fogColorFromIbl
*/
Texture* skyColor = nullptr; //!< %codegen_skip_json% %codegen_skip_javascript%
/**
* Enable or disable large-scale fog
*/
bool enabled = false;
};
/**

View File

@@ -91,8 +91,6 @@ public:
/**
* Sets a texture to a given attachment point.
*
* All RenderTargets must have a non-null COLOR attachment.
*
* When using a DEPTH attachment, it is important to always disable post-processing
* in the View. Failing to do so will cause the DEPTH attachment to be ignored in most
* cases.

View File

@@ -45,6 +45,7 @@ class Renderer;
class SkinningBuffer;
class VertexBuffer;
class Texture;
class InstanceBuffer;
class FEngine;
class FRenderPrimitive;
@@ -119,6 +120,12 @@ public:
public:
enum Result { Error = -1, Success = 0 };
/**
* Default render channel
* @see Builder::channel()
*/
static constexpr uint8_t DEFAULT_CHANNEL = 2u;
/**
* Creates a builder for renderable components.
*
@@ -231,10 +238,13 @@ public:
/**
* Set the channel this renderable is associated to. There can be 4 channels.
* All renderables in a given channel are rendered together, regardless of anything else.
* They are sorted as usual withing a channel.
* They are sorted as usual within a channel.
* Channels work similarly to priorities, except that they enforce the strongest ordering.
*
* @param channel clamped to the range [0..3], defaults to 0.
* Channels 0 and 1 may not have render primitives using a material with `refractionType`
* set to `screenspace`.
*
* @param channel clamped to the range [0..3], defaults to 2.
*
* @return Builder reference for chaining calls.
*
@@ -293,6 +303,14 @@ public:
*/
Builder& enableSkinningBuffers(bool enabled = true) noexcept;
/**
* Controls if this renderable is affected by the large-scale fog.
* @param enabled If true, enables large-scale fog on this object. Disables it otherwise.
* True by default.
* @return A reference to this Builder for chaining calls.
*/
Builder& fog(bool enabled = true) noexcept;
/**
* Enables GPU vertex skinning for up to 255 bones, 0 by default.
*
@@ -399,20 +417,47 @@ public:
*/
Builder& globalBlendOrderEnabled(size_t primitiveIndex, bool enabled) noexcept;
/**
* Specifies the number of draw instance of this renderable. The default is 1 instance and
* the maximum number of instances allowed is 65535. 0 is invalid.
* Specifies the number of draw instances of this renderable. The default is 1 instance and
* the maximum number of instances allowed is 32767. 0 is invalid.
*
* All instances are culled using the same bounding box, so care must be taken to make
* sure all instances render inside the specified bounding box.
*
* The material must set its `instanced` parameter to `true` in order to use
* getInstanceIndex() in the vertex or fragment shader to get the instance index and
* possibly adjust the position or transform.
*
* @param instanceCount the number of instances silently clamped between 1 and 65535.
* @param instanceCount the number of instances silently clamped between 1 and 32767.
*/
Builder& instances(size_t instanceCount) noexcept;
/**
* Specifies the number of draw instances of this renderable and an \c InstanceBuffer
* containing their local transforms. The default is 1 instance and the maximum number of
* instances allowed when supplying transforms is given by
* \c Engine::getMaxAutomaticInstances (64 on most platforms). 0 is invalid. The
* \c InstanceBuffer must not be destroyed before this renderable.
*
* All instances are culled using the same bounding box, so care must be taken to make
* sure all instances render inside the specified bounding box.
*
* The material must set its `instanced` parameter to `true` in order to use
* \c getInstanceIndex() in the vertex or fragment shader to get the instance index.
*
* Only the \c VERTEX_DOMAIN_OBJECT vertex domain is supported.
*
* The local transforms of each instance can be updated with
* \c InstanceBuffer::setLocalTransforms.
*
* \see InstanceBuffer
* \see instances(size_t, * math::mat4f const*)
* @param instanceCount the number of instances, silently clamped between 1 and
* the result of Engine::getMaxAutomaticInstances().
* @param instanceBuffer an InstanceBuffer containing at least instanceCount transforms
*/
Builder& instances(size_t instanceCount, InstanceBuffer* instanceBuffer) noexcept;
/**
* Adds the Renderable component to an entity.
*
@@ -499,6 +544,19 @@ public:
*/
void setCulling(Instance instance, bool enable) noexcept;
/**
* Changes whether or not the large-scale fog is applied to this renderable
* @see Builder::fog()
*/
void setFogEnabled(Instance instance, bool enable) noexcept;
/**
* Returns whether large-scale fog is enabled for this renderable.
* @return True if fog is enabled for this renderable.
* @see Builder::fog()
*/
bool getFogEnabled(Instance instance) const noexcept;
/**
* Enables or disables a light channel.
* Light channel 0 is enabled by default.

View File

@@ -707,6 +707,9 @@ public:
* The viewport, projection and model matrices can be obtained from Camera. Because
* pick() has some latency, it might be more accurate to obtain these values at the
* time the View::pick() call is made.
*
* Note: if the Engine is running at FEATURE_LEVEL_0, the precision or `depth` and
* `fragCoords.z` is only 8-bits.
*/
math::float3 fragCoords; //! screen space coordinates in GL convention
};
@@ -803,6 +806,37 @@ public:
PickingQuery& pick(uint32_t x, uint32_t y, backend::CallbackHandler* handler,
PickingQueryResultCallback callback) noexcept;
/**
* Set the value of material global variables. There are up-to four such variable each of
* type float4. These variables can be read in a user Material with
* `getMaterialGlobal{0|1|2|3}()`. All variable start with a default value of { 0, 0, 0, 1 }
*
* @param index index of the variable to set between 0 and 3.
* @param value new value for the variable.
* @see getMaterialGlobal
*/
void setMaterialGlobal(uint32_t index, math::float4 const& value);
/**
* Get the value of the material global variables.
* All variable start with a default value of { 0, 0, 0, 1 }
*
* @param index index of the variable to set between 0 and 3.
* @return current value of the variable.
* @see setMaterialGlobal
*/
math::float4 getMaterialGlobal(uint32_t index) const;
/**
* Get an Entity representing the large scale fog object.
* This entity is always inherited by the View's Scene.
*
* It is for example possible to create a TransformManager component with this
* Entity and apply a transformation globally on the fog.
*
* @return an Entity representing the large scale fog object.
*/
utils::Entity getFogEntity() const noexcept;
/**
* List of available ambient occlusion techniques

View File

@@ -20,7 +20,6 @@
#include <math/quat.h>
#include <math/vec3.h>
#include <math/vec4.h>
#include <utils/compiler.h>
namespace filament {
namespace geometry {
@@ -28,8 +27,7 @@ namespace geometry {
struct TangentSpaceMeshInput;
struct TangentSpaceMeshOutput;
/* WARNING: WORK-IN-PROGRESS, PLEASE DO NOT USE */
/**
/**
* This class builds Filament-style TANGENTS buffers given an input mesh.
*
* This class enables the client to chose between several algorithms. The client can retrieve the
@@ -140,8 +138,8 @@ public:
*/
Builder& operator=(Builder&& that) noexcept;
Builder(const Builder&) = delete;
Builder& operator=(const Builder&) = delete;
Builder(Builder const&) = delete;
Builder& operator=(Builder const&) = delete;
/**
* Client must provide this parameter
@@ -155,7 +153,7 @@ public:
* @param stride The stride for iterating through `normals`
* @return Builder
*/
Builder& normals(const filament::math::float3* normals, size_t stride = 0) noexcept;
Builder& normals(filament::math::float3 const* normals, size_t stride = 0) noexcept;
/**
* @param tangents The input tangents. The `w` component is for use with
@@ -163,25 +161,25 @@ public:
* @param stride The stride for iterating through `tangents`
* @return Builder
*/
Builder& tangents(const filament::math::float4* tangents, size_t stride = 0) noexcept;
Builder& tangents(filament::math::float4 const* tangents, size_t stride = 0) noexcept;
/**
* @param uvs The input uvs
* @param stride The stride for iterating through `uvs`
* @return Builder
*/
Builder& uvs(const filament::math::float2* uvs, size_t stride = 0) noexcept;
Builder& uvs(filament::math::float2 const* uvs, size_t stride = 0) noexcept;
/**
* @param positions The input positions
* @param stride The stride for iterating through `positions`
* @return Builder
*/
Builder& positions(const filament::math::float3* positions, size_t stride = 0) noexcept;
Builder& positions(filament::math::float3 const* positions, size_t stride = 0) noexcept;
Builder& triangleCount(size_t triangleCount) noexcept;
Builder& triangles(const filament::math::uint3* triangles) noexcept;
Builder& triangles(const filament::math::ushort3* triangles) noexcept;
Builder& triangles(filament::math::uint3 const* triangles) noexcept;
Builder& triangles(filament::math::ushort3 const* triangles) noexcept;
Builder& algorithm(Algorithm algorithm) noexcept;
@@ -216,8 +214,8 @@ public:
*/
TangentSpaceMesh& operator=(TangentSpaceMesh&& that) noexcept;
TangentSpaceMesh(const TangentSpaceMesh&) = delete;
TangentSpaceMesh& operator=(const TangentSpaceMesh&) = delete;
TangentSpaceMesh(TangentSpaceMesh const&) = delete;
TangentSpaceMesh& operator=(TangentSpaceMesh const&) = delete;
/**
* Number of output vertices

View File

@@ -142,7 +142,7 @@ class Ktx2Reader {
protected:
Async() noexcept = default;
~Async() = default;
virtual ~Async();
public:
Async(Async const&) = delete;

View File

@@ -8,5 +8,5 @@ IMAGE_PACKAGE:
IMAGE_IMAGE_OFFSET:
.int 0
IMAGE_IMAGE_SIZE:
.int 44497
.int 17687

View File

@@ -8,5 +8,5 @@ _IMAGE_PACKAGE:
_IMAGE_IMAGE_OFFSET:
.int 0
_IMAGE_IMAGE_SIZE:
.int 44497
.int 17687

Binary file not shown.

File diff suppressed because it is too large Load Diff

View File

@@ -430,8 +430,21 @@ constexpr TQuaternion<T> TMat33<T>::packTangentFrame(const TMat33<T>& m, size_t
return q;
}
} // namespace details
/**
* Pre-scale a matrix m by the inverse of the largest scale factor to avoid large post-transform
* magnitudes in the shader. This is useful for normal transformations, to avoid large
* post-transform magnitudes in the shader, especially in the fragment shader, where we use
* medium precision.
*/
template<typename T>
constexpr details::TMat33<T> prescaleForNormals(const details::TMat33<T>& m) noexcept {
return m * details::TMat33<T>(
1.0 / std::sqrt(max(float3{length2(m[0]), length2(m[1]), length2(m[2])})));
}
// ----------------------------------------------------------------------------------------
typedef details::TMat33<double> mat3;

View File

@@ -0,0 +1,145 @@
/** \file mikktspace/mikktspace.h
* \ingroup mikktspace
*/
/**
* Copyright (C) 2011 by Morten S. Mikkelsen
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef __MIKKTSPACE_H__
#define __MIKKTSPACE_H__
#ifdef __cplusplus
extern "C" {
#endif
/* Author: Morten S. Mikkelsen
* Version: 1.0
*
* The files mikktspace.h and mikktspace.c are designed to be
* stand-alone files and it is important that they are kept this way.
* Not having dependencies on structures/classes/libraries specific
* to the program, in which they are used, allows them to be copied
* and used as is into any tool, program or plugin.
* The code is designed to consistently generate the same
* tangent spaces, for a given mesh, in any tool in which it is used.
* This is done by performing an internal welding step and subsequently an order-independent evaluation
* of tangent space for meshes consisting of triangles and quads.
* This means faces can be received in any order and the same is true for
* the order of vertices of each face. The generated result will not be affected
* by such reordering. Additionally, whether degenerate (vertices or texture coordinates)
* primitives are present or not will not affect the generated results either.
* Once tangent space calculation is done the vertices of degenerate primitives will simply
* inherit tangent space from neighboring non degenerate primitives.
* The analysis behind this implementation can be found in my master's thesis
* which is available for download --> http://image.diku.dk/projects/media/morten.mikkelsen.08.pdf
* Note that though the tangent spaces at the vertices are generated in an order-independent way,
* by this implementation, the interpolated tangent space is still affected by which diagonal is
* chosen to split each quad. A sensible solution is to have your tools pipeline always
* split quads by the shortest diagonal. This choice is order-independent and works with mirroring.
* If these have the same length then compare the diagonals defined by the texture coordinates.
* XNormal which is a tool for baking normal maps allows you to write your own tangent space plugin
* and also quad triangulator plugin.
*/
typedef int tbool;
typedef struct SMikkTSpaceContext SMikkTSpaceContext;
typedef struct {
// Returns the number of faces (triangles/quads) on the mesh to be processed.
int (*m_getNumFaces)(const SMikkTSpaceContext * pContext);
// Returns the number of vertices on face number iFace
// iFace is a number in the range {0, 1, ..., getNumFaces()-1}
int (*m_getNumVerticesOfFace)(const SMikkTSpaceContext * pContext, const int iFace);
// returns the position/normal/texcoord of the referenced face of vertex number iVert.
// iVert is in the range {0,1,2} for triangles and {0,1,2,3} for quads.
void (*m_getPosition)(const SMikkTSpaceContext * pContext, float fvPosOut[], const int iFace, const int iVert);
void (*m_getNormal)(const SMikkTSpaceContext * pContext, float fvNormOut[], const int iFace, const int iVert);
void (*m_getTexCoord)(const SMikkTSpaceContext * pContext, float fvTexcOut[], const int iFace, const int iVert);
// either (or both) of the two setTSpace callbacks can be set.
// The call-back m_setTSpaceBasic() is sufficient for basic normal mapping.
// This function is used to return the tangent and fSign to the application.
// fvTangent is a unit length vector.
// For normal maps it is sufficient to use the following simplified version of the bitangent which is generated at pixel/vertex level.
// bitangent = fSign * cross(vN, tangent);
// Note that the results are returned unindexed. It is possible to generate a new index list
// But averaging/overwriting tangent spaces by using an already existing index list WILL produce INCRORRECT results.
// DO NOT! use an already existing index list.
void (*m_setTSpaceBasic)(const SMikkTSpaceContext * pContext, const float fvTangent[], const float fSign, const int iFace, const int iVert);
// This function is used to return tangent space results to the application.
// fvTangent and fvBiTangent are unit length vectors and fMagS and fMagT are their
// true magnitudes which can be used for relief mapping effects.
// fvBiTangent is the "real" bitangent and thus may not be perpendicular to fvTangent.
// However, both are perpendicular to the vertex normal.
// For normal maps it is sufficient to use the following simplified version of the bitangent which is generated at pixel/vertex level.
// fSign = bIsOrientationPreserving ? 1.0f : (-1.0f);
// bitangent = fSign * cross(vN, tangent);
// Note that the results are returned unindexed. It is possible to generate a new index list
// But averaging/overwriting tangent spaces by using an already existing index list WILL produce INCRORRECT results.
// DO NOT! use an already existing index list.
void (*m_setTSpace)(const SMikkTSpaceContext * pContext, const float fvTangent[], const float fvBiTangent[], const float fMagS, const float fMagT,
const tbool bIsOrientationPreserving, const int iFace, const int iVert);
} SMikkTSpaceInterface;
struct SMikkTSpaceContext
{
SMikkTSpaceInterface * m_pInterface; // initialized with callback functions
void * m_pUserData; // pointer to client side mesh data etc. (passed as the first parameter with every interface call)
};
// these are both thread safe!
tbool genTangSpaceDefault(const SMikkTSpaceContext * pContext); // Default (recommended) fAngularThreshold is 180 degrees (which means threshold disabled)
tbool genTangSpace(const SMikkTSpaceContext * pContext, const float fAngularThreshold);
// To avoid visual errors (distortions/unwanted hard edges in lighting), when using sampled normal maps, the
// normal map sampler must use the exact inverse of the pixel shader transformation.
// The most efficient transformation we can possibly do in the pixel shader is
// achieved by using, directly, the "unnormalized" interpolated tangent, bitangent and vertex normal: vT, vB and vN.
// pixel shader (fast transform out)
// vNout = normalize( vNt.x * vT + vNt.y * vB + vNt.z * vN );
// where vNt is the tangent space normal. The normal map sampler must likewise use the
// interpolated and "unnormalized" tangent, bitangent and vertex normal to be compliant with the pixel shader.
// sampler does (exact inverse of pixel shader):
// float3 row0 = cross(vB, vN);
// float3 row1 = cross(vN, vT);
// float3 row2 = cross(vT, vB);
// float fSign = dot(vT, row0)<0 ? -1 : 1;
// vNt = normalize( fSign * float3(dot(vNout,row0), dot(vNout,row1), dot(vNout,row2)) );
// where vNout is the sampled normal in some chosen 3D space.
//
// Should you choose to reconstruct the bitangent in the pixel shader instead
// of the vertex shader, as explained earlier, then be sure to do this in the normal map sampler also.
// Finally, beware of quad triangulations. If the normal map sampler doesn't use the same triangulation of
// quads as your renderer then problems will occur since the interpolated tangent spaces will differ
// eventhough the vertex level tangent spaces match. This can be solved either by triangulating before
// sampling/exporting or by using the order-independent choice of diagonal for splitting quads suggested earlier.
// However, this must be used both by the sampler and your tools/rendering pipeline.
#ifdef __cplusplus
}
#endif
#endif

View File

@@ -141,5 +141,4 @@ inline constexpr bool any(Enum lhs) noexcept {
return !none(lhs);
}
#endif // TNT_UTILS_BITMASKENUM_H

View File

@@ -253,6 +253,12 @@ public:
*/
static Path getTemporaryDirectory();
/**
* @return a path representing a directory where settings files can be stored,
* it is recommended to append an app specific folder name to that path
*/
static Path getUserSettingsDirectory();
/**
* Creates a directory denoted by the given path.
* This is not recursive and doesn't create intermediate directories.

View File

@@ -60,16 +60,19 @@ private:
protected:
static constexpr size_t ENTITY_INDEX = sizeof ... (Elements);
public:
using SoA = StructureOfArrays<Elements ..., Entity>;
using Structure = typename SoA::Structure;
using Instance = EntityInstanceBase::Type;
SingleInstanceComponentManager() noexcept {
// We always start with a dummy entry because index=0 is reserved. The component
// at index = 0, is guaranteed to be default-initialized.
// Sub-classes can use this to their advantage.
mData.push_back();
mData.push_back(Structure{});
}
SingleInstanceComponentManager(SingleInstanceComponentManager&&) noexcept {/* = default */}
@@ -269,7 +272,7 @@ SingleInstanceComponentManager<Elements ...>::addComponent(Entity e) {
if (!e.isNull()) {
if (!hasComponent(e)) {
// this is like a push_back(e);
mData.push_back().template back<ENTITY_INDEX>() = e;
mData.push_back(Structure{}).template back<ENTITY_INDEX>() = e;
// index 0 is used when the component doesn't exist
ci = Instance(mData.size() - 1);
mInstanceMap[e] = ci;

View File

@@ -41,11 +41,13 @@ class StructureOfArraysBase {
static constexpr const size_t kArrayCount = sizeof...(Elements);
public:
using SoA = StructureOfArraysBase<Allocator, Elements ...>;
using SoA = StructureOfArraysBase<Allocator, Elements...>;
using Structure = std::tuple<Elements...>;
// Type of the Nth array
template<size_t N>
using TypeAt = typename std::tuple_element_t<N, std::tuple<Elements...>>;
using TypeAt = typename std::tuple_element_t<N, Structure>;
// Number of arrays
static constexpr size_t getArrayCount() noexcept { return kArrayCount; }
@@ -57,7 +59,7 @@ public:
// --------------------------------------------------------------------------------------------
class Structure;
class IteratorValue;
template<typename T> class Iterator;
using iterator = Iterator<StructureOfArraysBase*>;
using const_iterator = Iterator<StructureOfArraysBase const*>;
@@ -69,45 +71,45 @@ public:
* In other words, it's the return type of iterator::operator*(), and since it
* cannot be a C++ reference (&), it's an object that acts like it.
*/
class StructureRef {
friend class Structure;
class IteratorValueRef {
friend class IteratorValue;
friend iterator;
friend const_iterator;
StructureOfArraysBase* const UTILS_RESTRICT soa;
size_t const index;
StructureRef(StructureOfArraysBase* soa, size_t index) : soa(soa), index(index) { }
IteratorValueRef(StructureOfArraysBase* soa, size_t index) : soa(soa), index(index) { }
// assigns a value_type to a reference (i.e. assigns to what's pointed to by the reference)
template<size_t ... Is>
StructureRef& assign(Structure const& rhs, std::index_sequence<Is...>);
IteratorValueRef& assign(IteratorValue const& rhs, std::index_sequence<Is...>);
// assigns a value_type to a reference (i.e. assigns to what's pointed to by the reference)
template<size_t ... Is>
StructureRef& assign(Structure&& rhs, std::index_sequence<Is...>) noexcept;
IteratorValueRef& assign(IteratorValue&& rhs, std::index_sequence<Is...>) noexcept;
// objects pointed to by reference can be swapped, so provide the special swap() function.
friend void swap(StructureRef lhs, StructureRef rhs) {
friend void swap(IteratorValueRef lhs, IteratorValueRef rhs) {
lhs.soa->swap(lhs.index, rhs.index);
}
public:
// references can be created by copy-assignment only
StructureRef(StructureRef const& rhs) noexcept : soa(rhs.soa), index(rhs.index) { }
IteratorValueRef(IteratorValueRef const& rhs) noexcept : soa(rhs.soa), index(rhs.index) { }
// copy the content of a reference to the content of this one
StructureRef& operator=(StructureRef const& rhs);
IteratorValueRef& operator=(IteratorValueRef const& rhs);
// move the content of a reference to the content of this one
StructureRef& operator=(StructureRef&& rhs) noexcept;
IteratorValueRef& operator=(IteratorValueRef&& rhs) noexcept;
// copy a value_type to the content of this reference
StructureRef& operator=(Structure const& rhs) {
IteratorValueRef& operator=(IteratorValue const& rhs) {
return assign(rhs, std::make_index_sequence<kArrayCount>());
}
// move a value_type to the content of this reference
StructureRef& operator=(Structure&& rhs) noexcept {
IteratorValueRef& operator=(IteratorValue&& rhs) noexcept {
return assign(rhs, std::make_index_sequence<kArrayCount>());
}
@@ -122,36 +124,36 @@ public:
* Internally we're using a tuple<> to store the data.
* This object is not trivial to construct, as it copies an entry of the SoA.
*/
class Structure {
friend class StructureRef;
class IteratorValue {
friend class IteratorValueRef;
friend iterator;
friend const_iterator;
using Type = std::tuple<typename std::decay<Elements>::type...>;
Type elements;
template<size_t ... Is>
static Type init(StructureRef const& rhs, std::index_sequence<Is...>) {
static Type init(IteratorValueRef const& rhs, std::index_sequence<Is...>) {
return Type{ rhs.soa->template elementAt<Is>(rhs.index)... };
}
template<size_t ... Is>
static Type init(StructureRef&& rhs, std::index_sequence<Is...>) noexcept {
static Type init(IteratorValueRef&& rhs, std::index_sequence<Is...>) noexcept {
return Type{ std::move(rhs.soa->template elementAt<Is>(rhs.index))... };
}
public:
Structure(Structure const& rhs) = default;
Structure(Structure&& rhs) noexcept = default;
Structure& operator=(Structure const& rhs) = default;
Structure& operator=(Structure&& rhs) noexcept = default;
IteratorValue(IteratorValue const& rhs) = default;
IteratorValue(IteratorValue&& rhs) noexcept = default;
IteratorValue& operator=(IteratorValue const& rhs) = default;
IteratorValue& operator=(IteratorValue&& rhs) noexcept = default;
// initialize and assign from a StructureRef
Structure(StructureRef const& rhs)
IteratorValue(IteratorValueRef const& rhs)
: elements(init(rhs, std::make_index_sequence<kArrayCount>())) {}
Structure(StructureRef&& rhs) noexcept
IteratorValue(IteratorValueRef&& rhs) noexcept
: elements(init(rhs, std::make_index_sequence<kArrayCount>())) {}
Structure& operator=(StructureRef const& rhs) { return operator=(Structure(rhs)); }
Structure& operator=(StructureRef&& rhs) noexcept { return operator=(Structure(rhs)); }
IteratorValue& operator=(IteratorValueRef const& rhs) { return operator=(IteratorValue(rhs)); }
IteratorValue& operator=(IteratorValueRef&& rhs) noexcept { return operator=(IteratorValue(rhs)); }
// access the elements of this value_Type (i.e. the "fields" of the structure)
template<size_t I> TypeAt<I> const& get() const { return std::get<I>(elements); }
@@ -174,9 +176,9 @@ public:
Iterator(CVQualifiedSOAPointer soa, size_t index) : soa(soa), index(index) {}
public:
using value_type = Structure;
using reference = StructureRef;
using pointer = StructureRef*; // FIXME: this should be a StructurePtr type
using value_type = IteratorValue;
using reference = IteratorValueRef;
using pointer = IteratorValueRef*; // FIXME: this should be a StructurePtr type
using difference_type = ptrdiff_t;
using iterator_category = std::random_access_iterator_tag;
@@ -335,6 +337,11 @@ public:
return *this;
}
StructureOfArraysBase& push_back(Structure&& args) noexcept {
ensureCapacity(mSize + 1);
return push_back_unsafe(std::forward<Structure>(args));
}
StructureOfArraysBase& push_back(Elements const& ... args) noexcept {
ensureCapacity(mSize + 1);
return push_back_unsafe(args...);
@@ -349,23 +356,29 @@ public:
struct PushBackUnsafeClosure {
size_t last;
std::tuple<Elements...> args;
inline explicit PushBackUnsafeClosure(size_t last, Elements&& ... args)
: last(last), args(std::forward<Elements>(args)...) {}
inline explicit PushBackUnsafeClosure(size_t last, Elements const& ... args)
: last(last), args(args...) {}
inline explicit PushBackUnsafeClosure(size_t last, Structure&& args)
: last(last), args(std::forward<Structure>(args)) {}
template<size_t I>
inline void operator()(TypeAt<I>* p) {
new(p + last) TypeAt<I>{ std::get<I>(args) };
}
};
StructureOfArraysBase& push_back_unsafe(Structure&& args) noexcept {
for_each_index(mArrays,
PushBackUnsafeClosure{ mSize++, std::forward<Structure>(args) });
return *this;
}
StructureOfArraysBase& push_back_unsafe(Elements const& ... args) noexcept {
for_each_index(mArrays, PushBackUnsafeClosure{ mSize++, args... });
for_each_index(mArrays,
PushBackUnsafeClosure{ mSize++, { args... } });
return *this;
}
StructureOfArraysBase& push_back_unsafe(Elements&& ... args) noexcept {
for_each_index(mArrays, PushBackUnsafeClosure{ mSize++, std::forward<Elements>(args)... });
for_each_index(mArrays,
PushBackUnsafeClosure{ mSize++, { std::forward<Elements>(args)... }});
return *this;
}
@@ -562,8 +575,10 @@ private:
forEach([from, to](auto p) {
using T = typename std::decay<decltype(*p)>::type;
// note: scalar types like int/float get initialized to zero
for (size_t i = from; i < to; i++) {
new(p + i) T();
if constexpr (!std::is_trivially_default_constructible_v<T>) {
for (size_t i = from; i < to; i++) {
new(p + i) T();
}
}
});
}
@@ -571,8 +586,10 @@ private:
void destroy_each(size_t from, size_t to) noexcept {
forEach([from, to](auto p) {
using T = typename std::decay<decltype(*p)>::type;
for (size_t i = from; i < to; i++) {
p[i].~T();
if constexpr (!std::is_trivially_destructible_v<T>) {
for (size_t i = from; i < to; i++) {
p[i].~T();
}
}
});
}
@@ -592,15 +609,17 @@ private:
reinterpret_cast<T*>(uintptr_t(b) + offsets[index]);
// for trivial cases, just call memcpy()
if (std::is_trivially_copyable<T>::value &&
std::is_trivially_destructible<T>::value) {
if constexpr (std::is_trivially_copyable_v<T> &&
std::is_trivially_destructible_v<T>) {
memcpy(arrayPointer, p, size * sizeof(T));
} else {
for (size_t i = 0; i < size; i++) {
// we move an element by using the in-place move-constructor
new(arrayPointer + i) T(std::move(p[i]));
// and delete them by calling the destructor directly
p[i].~T();
if constexpr (!std::is_trivially_destructible_v<T>) {
// and delete them by calling the destructor directly
p[i].~T();
}
}
}
index++;
@@ -626,27 +645,27 @@ private:
template<typename Allocator, typename... Elements>
inline
typename StructureOfArraysBase<Allocator, Elements...>::StructureRef&
StructureOfArraysBase<Allocator, Elements...>::StructureRef::operator=(
StructureOfArraysBase::StructureRef const& rhs) {
return operator=(Structure(rhs));
typename StructureOfArraysBase<Allocator, Elements...>::IteratorValueRef&
StructureOfArraysBase<Allocator, Elements...>::IteratorValueRef::operator=(
StructureOfArraysBase::IteratorValueRef const& rhs) {
return operator=(IteratorValue(rhs));
}
template<typename Allocator, typename... Elements>
inline
typename StructureOfArraysBase<Allocator, Elements...>::StructureRef&
StructureOfArraysBase<Allocator, Elements...>::StructureRef::operator=(
StructureOfArraysBase::StructureRef&& rhs) noexcept {
return operator=(Structure(rhs));
typename StructureOfArraysBase<Allocator, Elements...>::IteratorValueRef&
StructureOfArraysBase<Allocator, Elements...>::IteratorValueRef::operator=(
StructureOfArraysBase::IteratorValueRef&& rhs) noexcept {
return operator=(IteratorValue(rhs));
}
template<typename Allocator, typename... Elements>
template<size_t... Is>
inline
typename StructureOfArraysBase<Allocator, Elements...>::StructureRef&
StructureOfArraysBase<Allocator, Elements...>::StructureRef::assign(
StructureOfArraysBase::Structure const& rhs, std::index_sequence<Is...>) {
// implements StructureRef& StructureRef::operator=(Structure const& rhs)
typename StructureOfArraysBase<Allocator, Elements...>::IteratorValueRef&
StructureOfArraysBase<Allocator, Elements...>::IteratorValueRef::assign(
StructureOfArraysBase::IteratorValue const& rhs, std::index_sequence<Is...>) {
// implements IteratorValueRef& IteratorValueRef::operator=(IteratorValue const& rhs)
auto UTILS_UNUSED l = { (soa->elementAt<Is>(index) = std::get<Is>(rhs.elements), 0)... };
return *this;
}
@@ -654,10 +673,10 @@ StructureOfArraysBase<Allocator, Elements...>::StructureRef::assign(
template<typename Allocator, typename... Elements>
template<size_t... Is>
inline
typename StructureOfArraysBase<Allocator, Elements...>::StructureRef&
StructureOfArraysBase<Allocator, Elements...>::StructureRef::assign(
StructureOfArraysBase::Structure&& rhs, std::index_sequence<Is...>) noexcept {
// implements StructureRef& StructureRef::operator=(Structure&& rhs) noexcept
typename StructureOfArraysBase<Allocator, Elements...>::IteratorValueRef&
StructureOfArraysBase<Allocator, Elements...>::IteratorValueRef::assign(
StructureOfArraysBase::IteratorValue&& rhs, std::index_sequence<Is...>) noexcept {
// implements IteratorValueRef& IteratorValueRef::operator=(IteratorValue&& rhs) noexcept
auto UTILS_UNUSED l = {
(soa->elementAt<Is>(index) = std::move(std::get<Is>(rhs.elements)), 0)... };
return *this;

View File

@@ -54,6 +54,12 @@
# define UTILS_NORETURN
#endif
#if __has_attribute(fallthrough)
# define UTILS_FALLTHROUGH [[fallthrough]]
#else
# define UTILS_FALLTHROUGH
#endif
#if __has_attribute(visibility)
# ifndef TNT_DEV
# define UTILS_PRIVATE __attribute__((visibility("hidden")))

View File

@@ -107,7 +107,7 @@ private:
friend ostream& flush(ostream& s) noexcept;
enum type {
SHORT, USHORT, CHAR, UCHAR, INT, UINT, LONG, ULONG, LONG_LONG, ULONG_LONG, DOUBLE,
SHORT, USHORT, CHAR, UCHAR, INT, UINT, LONG, ULONG, LONG_LONG, ULONG_LONG, FLOAT, DOUBLE,
LONG_DOUBLE
};

View File

@@ -82,7 +82,7 @@ using LightManager = filament::LightManager;
void applySettings(Engine* engine, const ViewSettings& settings, View* dest);
void applySettings(Engine* engine, const MaterialSettings& settings, MaterialInstance* dest);
void applySettings(Engine* engine, const LightSettings& settings, IndirectLight* ibl, utils::Entity sunlight,
utils::Entity* sceneLights, size_t sceneLightCount, LightManager* lm, Scene* scene, View* view);
const utils::Entity* sceneLights, size_t sceneLightCount, LightManager* lm, Scene* scene, View* view);
void applySettings(Engine* engine, const ViewerOptions& settings, Camera* camera, Skybox* skybox,
Renderer* renderer);
@@ -160,6 +160,10 @@ struct DynamicLightingSettings {
float zLightFar = 100;
};
struct FogSettings {
Texture* fogColorTexture = nullptr;
};
// This defines fields in the same order as the setter methods in filament::View.
struct ViewSettings {
// standalone View settings
@@ -185,6 +189,7 @@ struct ViewSettings {
// Custom View Options
ColorGradingSettings colorGrading;
DynamicLightingSettings dynamicLighting;
FogSettings fogSettings;
};
template <typename T>
@@ -204,6 +209,9 @@ struct LightSettings {
LightManager::ShadowOptions shadowOptions;
SoftShadowOptions softShadowOptions;
float sunlightIntensity = 100000.0f;
float sunlightHaloSize = 10.0f;
float sunlightHaloFalloff = 80.0f;
float sunlightAngularRadius = 1.9f;
math::float3 sunlightDirection = {0.6, -1.0, -0.8};
math::float3 sunlightColor = filament::Color::toLinear<filament::ACCURATE>({ 0.98, 0.92, 0.89});
float iblIntensity = 30000.0f;
@@ -214,6 +222,8 @@ struct ViewerOptions {
float cameraAperture = 16.0f;
float cameraSpeed = 125.0f;
float cameraISO = 100.0f;
float cameraNear = 0.1f;
float cameraFar = 100.0f;
float groundShadowStrength = 0.75f;
bool groundPlaneEnabled = false;
bool skyboxEnabled = true;

View File

@@ -234,8 +234,6 @@ public:
private:
using SceneMask = gltfio::NodeManager::SceneMask;
void updateIndirectLight();
bool isRemoteMode() const { return mAsset == nullptr; }
void sceneSelectionUI();