#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "material/FileMaterialProvider.hpp" #include "material/UnlitMaterialProvider.hpp" #include "material/unlit.h" #include "StreamBufferAdapter.hpp" #include "Log.hpp" #include "SceneManager.hpp" #include "gltfio/materials/uberarchive.h" extern "C" { #include "material/image.h" } namespace thermion_filament { using namespace std::chrono; using namespace image; using namespace utils; using namespace filament; using namespace filament::gltfio; using std::unique_ptr; SceneManager::SceneManager(View *view, const ResourceLoaderWrapperImpl *const resourceLoaderWrapper, Engine *engine, Scene *scene, Scene *highlightScene, const char *uberArchivePath) : _view(view), _resourceLoaderWrapper(resourceLoaderWrapper), _engine(engine), _scene(scene), _highlightScene(highlightScene) { _stbDecoder = createStbProvider(_engine); _ktxDecoder = createKtx2Provider(_engine); _gltfResourceLoader = new ResourceLoader({.engine = _engine, .normalizeSkinningWeights = true}); if (uberArchivePath) { auto uberdata = resourceLoaderWrapper->load(uberArchivePath); if (!uberdata.data) { Log("Failed to load ubershader material. This is fatal."); } _ubershaderProvider = gltfio::createUbershaderProvider(_engine, uberdata.data, uberdata.size); resourceLoaderWrapper->free(uberdata); } else { _ubershaderProvider = gltfio::createUbershaderProvider( _engine, UBERARCHIVE_DEFAULT_DATA, UBERARCHIVE_DEFAULT_SIZE); } _unlitMaterialProvider = new UnlitMaterialProvider(_engine, UNLIT_PACKAGE, UNLIT_UNLIT_SIZE); utils::EntityManager &em = utils::EntityManager::get(); _ncm = new NameComponentManager(em); _assetLoader = AssetLoader::create({_engine, _ubershaderProvider, _ncm, &em}); _gltfResourceLoader->addTextureProvider("image/ktx2", _ktxDecoder); _gltfResourceLoader->addTextureProvider("image/png", _stbDecoder); _gltfResourceLoader->addTextureProvider("image/jpeg", _stbDecoder); auto &tm = _engine->getTransformManager(); _collisionComponentManager = new CollisionComponentManager(tm); _animationComponentManager = new AnimationComponentManager(tm, _engine->getRenderableManager()); gizmo = new Gizmo(*_engine, _view, _scene); _gridOverlay = new GridOverlay(*_engine); _scene->addEntity(_gridOverlay->sphere()); _scene->addEntity(_gridOverlay->grid()); _view->setLayerEnabled(0, true); // scene assets _view->setLayerEnabled(1, true); // gizmo _view->setLayerEnabled(2, false); // world grid } SceneManager::~SceneManager() { destroyAll(); gizmo->destroy(); _gridOverlay->destroy(); _gltfResourceLoader->asyncCancelLoad(); _ubershaderProvider->destroyMaterials(); delete _animationComponentManager; delete _collisionComponentManager; delete _ncm; delete _gltfResourceLoader; delete _stbDecoder; delete _ktxDecoder; delete _ubershaderProvider; AssetLoader::destroy(&_assetLoader); } int SceneManager::getInstanceCount(EntityId entityId) { auto *asset = getAssetByEntityId(entityId); if (!asset) { return -1; } return asset->getAssetInstanceCount(); } void SceneManager::getInstances(EntityId entityId, EntityId *out) { auto *asset = getAssetByEntityId(entityId); if (!asset) { return; } auto *instances = asset->getAssetInstances(); for (int i = 0; i < asset->getAssetInstanceCount(); i++) { auto instanceEntity = instances[i]->getRoot(); out[i] = Entity::smuggle(instanceEntity); } } EntityId SceneManager::loadGltf(const char *uri, const char *relativeResourcePath, bool keepData) { ResourceBuffer rbuf = _resourceLoaderWrapper->load(uri); FilamentAsset *asset = _assetLoader->createAsset((uint8_t *)rbuf.data, rbuf.size); if (!asset) { Log("Unable to parse asset"); return 0; } const char *const *const resourceUris = asset->getResourceUris(); const size_t resourceUriCount = asset->getResourceUriCount(); std::vector resourceBuffers; for (size_t i = 0; i < resourceUriCount; i++) { std::string uri = std::string(relativeResourcePath) + std::string("/") + std::string(resourceUris[i]); ResourceBuffer buf = _resourceLoaderWrapper->load(uri.c_str()); resourceBuffers.push_back(buf); ResourceLoader::BufferDescriptor b(buf.data, buf.size); _gltfResourceLoader->addResourceData(resourceUris[i], std::move(b)); } #ifdef __EMSCRIPTEN__ if (!_gltfResourceLoader->asyncBeginLoad(asset)) { Log("Unknown error loading glTF asset"); _resourceLoaderWrapper->free(rbuf); for (auto &rb : resourceBuffers) { _resourceLoaderWrapper->free(rb); } return 0; } while (_gltfResourceLoader->asyncGetLoadProgress() < 1.0f) { _gltfResourceLoader->asyncUpdateLoad(); } #else // load resources synchronously if (!_gltfResourceLoader->loadResources(asset)) { Log("Unknown error loading glTF asset"); _resourceLoaderWrapper->free(rbuf); for (auto &rb : resourceBuffers) { _resourceLoaderWrapper->free(rb); } return 0; } #endif _scene->addEntities(asset->getEntities(), asset->getEntityCount()); FilamentInstance *inst = asset->getInstance(); inst->getAnimator()->updateBoneMatrices(); inst->recomputeBoundingBoxes(); if(!keepData) { asset->releaseSourceData(); } EntityId eid = Entity::smuggle(asset->getRoot()); _assets.emplace(eid, asset); for (auto &rb : resourceBuffers) { _resourceLoaderWrapper->free(rb); } _resourceLoaderWrapper->free(rbuf); Log("Finished loading glTF from %s", uri); return eid; } EntityId SceneManager::loadGlbFromBuffer(const uint8_t *data, size_t length, int numInstances, bool keepData) { FilamentAsset *asset = nullptr; if (numInstances > 1) { std::vector instances(numInstances); asset = _assetLoader->createInstancedAsset((const uint8_t *)data, length, instances.data(), numInstances); } else { asset = _assetLoader->createAsset(data, length); } if (!asset) { Log("Unknown error loading GLB asset."); return 0; } size_t entityCount = asset->getEntityCount(); _scene->addEntities(asset->getEntities(), entityCount); #ifdef __EMSCRIPTEN__ if (!_gltfResourceLoader->asyncBeginLoad(asset)) { Log("Unknown error loading glb asset"); return 0; } while (_gltfResourceLoader->asyncGetLoadProgress() < 1.0f) { _gltfResourceLoader->asyncUpdateLoad(); } #else if (!_gltfResourceLoader->loadResources(asset)) { Log("Unknown error loading glb asset"); return 0; } #endif auto lights = asset->getLightEntities(); _scene->addEntities(lights, asset->getLightEntityCount()); for (int i = 0; i < asset->getAssetInstanceCount(); i++) { FilamentInstance *inst = asset->getAssetInstances()[i]; inst->getAnimator()->updateBoneMatrices(); inst->recomputeBoundingBoxes(); auto instanceEntity = inst->getRoot(); auto instanceEntityId = Entity::smuggle(instanceEntity); _instances.emplace(instanceEntityId, inst); } if(!keepData) { asset->releaseSourceData(); } EntityId eid = Entity::smuggle(asset->getRoot()); _assets.emplace(eid, asset); return eid; } void SceneManager::removeAnimationComponent(EntityId entityId) { auto *instance = getInstanceByEntityId(entityId); if (!instance) { auto *asset = getAssetByEntityId(entityId); if (asset) { instance = asset->getInstance(); } } if (instance) { _animationComponentManager->removeAnimationComponent(instance); } else { _animationComponentManager->removeAnimationComponent(Entity::import(entityId)); } } bool SceneManager::addAnimationComponent(EntityId entityId) { auto *instance = getInstanceByEntityId(entityId); if (!instance) { auto *asset = getAssetByEntityId(entityId); if (asset) { instance = asset->getInstance(); } } if (instance) { _animationComponentManager->addAnimationComponent(instance); } else { _animationComponentManager->addAnimationComponent(Entity::import(entityId)); } return true; } EntityId SceneManager::createInstance(EntityId entityId) { std::lock_guard lock(_mutex); const auto &pos = _assets.find(entityId); if (pos == _assets.end()) { Log("Couldn't find asset under specified entity id."); return 0; } const auto asset = pos->second; auto instance = _assetLoader->createInstance(asset); if(!instance) { Log("Failed to create instance"); return 0; } auto root = instance->getRoot(); _scene->addEntities(instance->getEntities(), instance->getEntityCount()); return Entity::smuggle(root); } EntityId SceneManager::loadGlb(const char *uri, int numInstances, bool keepData) { ResourceBuffer rbuf = _resourceLoaderWrapper->load(uri); auto entity = loadGlbFromBuffer((const uint8_t *)rbuf.data, rbuf.size, numInstances, keepData); _resourceLoaderWrapper->free(rbuf); return entity; } bool SceneManager::hide(EntityId entityId, const char *meshName) { auto *instance = getInstanceByEntityId(entityId); if (!instance) { auto *asset = getAssetByEntityId(entityId); if (asset) { instance = asset->getInstance(); } else { // Log("Failed to find glTF instance under entityID %d, hiding as regular entity", entityId); _scene->remove(Entity::import(entityId)); return true; } } utils::Entity entity; if (meshName) { entity = findEntityByName(instance, meshName); if (entity.isNull()) { Log("Failed to hide entity; specified mesh name does not exist under the target entity, or the target entity itself is no longer valid."); return false; } _scene->remove(entity); } else { auto *entities = instance->getEntities(); for (int i = 0; i < instance->getEntityCount(); i++) { auto entity = entities[i]; _scene->remove(entity); } } return true; } bool SceneManager::reveal(EntityId entityId, const char *meshName) { auto *instance = getInstanceByEntityId(entityId); if (!instance) { auto *asset = getAssetByEntityId(entityId); if (asset) { instance = asset->getInstance(); } else { // Log("Failed to find glTF instance under entityID %d, revealing as regular entity", entityId); _scene->addEntity(Entity::import(entityId)); return true; } } utils::Entity entity; if (meshName) { entity = findEntityByName(instance, meshName); if (entity.isNull()) { Log("Failed to reveal entity; specified mesh name does not exist under the target entity, or the target entity itself is no longer valid."); return false; } _scene->addEntity(entity); } else { // Log("Revealing all child entities"); auto *entities = instance->getEntities(); for (int i = 0; i < instance->getEntityCount(); i++) { auto entity = entities[i]; _scene->addEntity(entity); } } return true; } void SceneManager::destroyAll() { std::lock_guard lock(_mutex); for (auto &asset : _assets) { auto numInstances = asset.second->getAssetInstanceCount(); for (int i = 0; i < numInstances; i++) { auto instance = asset.second->getAssetInstances()[i]; for (int j = 0; j < instance->getEntityCount(); j++) { auto childEntity = instance->getEntities()[j]; if (_collisionComponentManager->hasComponent(childEntity)) { _collisionComponentManager->removeComponent(childEntity); } if (_animationComponentManager->hasComponent(childEntity)) { _animationComponentManager->removeComponent(childEntity); } } } _scene->removeEntities(asset.second->getEntities(), asset.second->getEntityCount()); _scene->removeEntities(asset.second->getLightEntities(), asset.second->getLightEntityCount()); _assetLoader->destroyAsset(asset.second); } _assets.clear(); } FilamentInstance *SceneManager::getInstanceByEntityId(EntityId entityId) { const auto &pos = _instances.find(entityId); if (pos == _instances.end()) { return nullptr; } return pos->second; } FilamentAsset *SceneManager::getAssetByEntityId(EntityId entityId) { const auto &pos = _assets.find(entityId); if (pos == _assets.end()) { return nullptr; } return pos->second; } math::mat4f SceneManager::getLocalTransform(EntityId entityId) { auto entity = Entity::import(entityId); auto &tm = _engine->getTransformManager(); auto transformInstance = tm.getInstance(entity); return tm.getTransform(transformInstance); } math::mat4f SceneManager::getWorldTransform(EntityId entityId) { auto entity = Entity::import(entityId); auto &tm = _engine->getTransformManager(); auto transformInstance = tm.getInstance(entity); return tm.getWorldTransform(transformInstance); } EntityId SceneManager::getBone(EntityId entityId, int skinIndex, int boneIndex) { auto *instance = getInstanceByEntityId(entityId); if (!instance) { auto *asset = getAssetByEntityId(entityId); if (asset) { instance = asset->getInstance(); } else { Log("Failed to find glTF instance under entityID %d, revealing as regular entity", entityId); return false; } } auto joints = instance->getJointsAt(skinIndex); auto joint = joints[boneIndex]; return Entity::smuggle(joint); } math::mat4f SceneManager::getInverseBindMatrix(EntityId entityId, int skinIndex, int boneIndex) { auto *instance = getInstanceByEntityId(entityId); if (!instance) { auto *asset = getAssetByEntityId(entityId); if (asset) { instance = asset->getInstance(); } else { Log("Failed to find glTF instance under entityID %d, revealing as regular entity", entityId); return math::mat4f(); } } auto inverseBindMatrix = instance->getInverseBindMatricesAt(skinIndex)[boneIndex]; return inverseBindMatrix; } bool SceneManager::setBoneTransform(EntityId entityId, int32_t skinIndex, int boneIndex, math::mat4f transform) { std::lock_guard lock(_mutex); const auto &entity = Entity::import(entityId); RenderableManager &rm = _engine->getRenderableManager(); const auto &renderableInstance = rm.getInstance(entity); if (!renderableInstance.isValid()) { Log("Specified entity is not a renderable. You probably provided the ultimate parent entity of a glTF asset, which is non-renderable. "); return false; } rm.setBones( renderableInstance, &transform, 1, boneIndex); return true; } void SceneManager::remove(EntityId entityId) { std::lock_guard lock(_mutex); auto entity = Entity::import(entityId); if (_animationComponentManager->hasComponent(entity)) { _animationComponentManager->removeComponent(entity); } if (_collisionComponentManager->hasComponent(entity)) { _collisionComponentManager->removeComponent(entity); } _scene->remove(entity); const auto *instance = getInstanceByEntityId(entityId); if (instance) { _instances.erase(entityId); _scene->removeEntities(instance->getEntities(), instance->getEntityCount()); for (int i = 0; i < instance->getEntityCount(); i++) { auto childEntity = instance->getEntities()[i]; if (_collisionComponentManager->hasComponent(childEntity)) { _collisionComponentManager->removeComponent(childEntity); } if (_animationComponentManager->hasComponent(childEntity)) { _animationComponentManager->removeComponent(childEntity); } } } else { auto *asset = getAssetByEntityId(entityId); if (!asset) { Log("ERROR: could not find FilamentInstance or FilamentAsset associated with the given entity id"); return; } _assets.erase(entityId); _scene->removeEntities(asset->getEntities(), asset->getEntityCount()); _animationComponentManager->removeComponent(asset->getInstance()->getRoot()); for (int i = 0; i < asset->getEntityCount(); i++) { auto childEntity = asset->getEntities()[i]; if (_collisionComponentManager->hasComponent(childEntity)) { _collisionComponentManager->removeComponent(childEntity); } if (_animationComponentManager->hasComponent(childEntity)) { _animationComponentManager->removeComponent(childEntity); } } auto lightCount = asset->getLightEntityCount(); if (lightCount > 0) { _scene->removeEntities(asset->getLightEntities(), asset->getLightEntityCount()); } _assetLoader->destroyAsset(asset); } } bool SceneManager::setMorphTargetWeights(EntityId entityId, const float *const weights, const int count) { std::lock_guard lock(_mutex); auto entity = Entity::import(entityId); if (entity.isNull()) { Log("Warning: null entity %d", entityId); return false; } RenderableManager &rm = _engine->getRenderableManager(); auto renderableInstance = rm.getInstance(entity); if (!renderableInstance.isValid()) { Log("Warning: failed to find a valid renderable instance for child entity %d", entityId); return false; } rm.setMorphWeights( renderableInstance, weights, count); return true; } utils::Entity SceneManager::findChildEntityByName(EntityId entityId, const char *entityName) { std::lock_guard lock(_mutex); auto *instance = getInstanceByEntityId(entityId); if (!instance) { auto *asset = getAssetByEntityId(entityId); if (!asset) { return utils::Entity(); } instance = asset->getInstance(); } const auto entity = findEntityByName(instance, entityName); if (entity.isNull()) { Log("Failed to find entity %s.", entityName); } return entity; } utils::Entity SceneManager::findEntityByName(const FilamentInstance *instance, const char *entityName) { utils::Entity entity; for (size_t i = 0, c = instance->getEntityCount(); i != c; ++i) { auto entity = instance->getEntities()[i]; auto nameInstance = _ncm->getInstance(entity); if (!nameInstance.isValid()) { continue; } auto name = _ncm->getName(nameInstance); if (!name) { continue; } if (strcmp(entityName, name) == 0) { return entity; } } return entity; } bool SceneManager::setMorphAnimationBuffer( EntityId entityId, const float *const morphData, const int *const morphIndices, int numMorphTargets, int numFrames, float frameLengthInMs) { std::lock_guard lock(_mutex); auto entity = Entity::import(entityId); if (entity.isNull()) { Log("ERROR: invalid entity %d.", entityId); return false; } if (!_animationComponentManager->hasComponent(entity)) { _animationComponentManager->addAnimationComponent(entity); } MorphAnimation morphAnimation; morphAnimation.meshTarget = entity; morphAnimation.frameData.clear(); morphAnimation.frameData.insert( morphAnimation.frameData.begin(), morphData, morphData + (numFrames * numMorphTargets)); morphAnimation.frameLengthInMs = frameLengthInMs; morphAnimation.morphIndices.resize(numMorphTargets); for (int i = 0; i < numMorphTargets; i++) { morphAnimation.morphIndices[i] = morphIndices[i]; } morphAnimation.durationInSecs = (frameLengthInMs * numFrames) / 1000.0f; morphAnimation.start = high_resolution_clock::now(); morphAnimation.lengthInFrames = static_cast( morphAnimation.durationInSecs * 1000.0f / frameLengthInMs); auto animationComponentInstance = _animationComponentManager->getInstance(entity); auto &animationComponent = _animationComponentManager->elementAt<0>(animationComponentInstance); auto &morphAnimations = animationComponent.morphAnimations; morphAnimations.emplace_back(morphAnimation); return true; } void SceneManager::clearMorphAnimationBuffer( EntityId entityId) { std::lock_guard lock(_mutex); auto entity = Entity::import(entityId); if (entity.isNull()) { Log("ERROR: invalid entity %d.", entityId); return; } auto animationComponentInstance = _animationComponentManager->getInstance(entity); auto &animationComponent = _animationComponentManager->elementAt<0>(animationComponentInstance); auto &morphAnimations = animationComponent.morphAnimations; morphAnimations.clear(); return; } bool SceneManager::setMaterialColor(EntityId entityId, const char *meshName, int materialIndex, const float r, const float g, const float b, const float a) { auto *instance = getInstanceByEntityId(entityId); if (!instance) { auto *asset = getAssetByEntityId(entityId); if (asset) { instance = asset->getInstance(); } else { return false; } } auto entity = findEntityByName(instance, meshName); RenderableManager &rm = _engine->getRenderableManager(); auto renderable = rm.getInstance(entity); if (!renderable.isValid()) { Log("Renderable not valid, was the entity id correct?"); return false; } MaterialInstance *mi = rm.getMaterialInstanceAt(renderable, materialIndex); if (!mi) { Log("ERROR: material index must be less than number of material instances"); return false; } mi->setParameter("baseColorFactor", RgbaType::sRGB, math::float4(r, g, b, a)); Log("Set baseColorFactor for entity %d to %f %f %f %f", entityId, r, g, b, a); return true; } void SceneManager::resetBones(EntityId entityId) { std::lock_guard lock(_mutex); auto *instance = getInstanceByEntityId(entityId); if (!instance) { auto *asset = getAssetByEntityId(entityId); if (asset) { instance = asset->getInstance(); } else { return; } } auto skinCount = instance->getSkinCount(); TransformManager &transformManager = _engine->getTransformManager(); // // To reset the skeleton to its rest pose, we could just call animator->resetBoneMatrices(), // which sets all bone matrices to the identity matrix. However, any subsequent calls to animator->updateBoneMatrices() // may result in unexpected poses, because that method uses each bone's transform to calculate // the bone matrices (and resetBoneMatrices does not affect this transform). // To "fully" reset the bone, we need to set its local transform (i.e. relative to its parent) // to its original orientation in rest pose. // // This can be calculated as: // // auto rest = inverse(parentTransformInModelSpace) * bindMatrix // // (where bindMatrix is the inverse of the inverseBindMatrix). // // The only requirement is that parent bone transforms are reset before child bone transforms. // glTF/Filament does not guarantee that parent bones are listed before child bones under a FilamentInstance. // We ensure that parents are reset before children by: // - pushing all bones onto a stack // - iterate over the stack // - look at the bone at the top of the stack // - if the bone already been reset, pop and continue iterating over the stack // - otherwise // - if the bone has a parent that has not been reset, push the parent to the top of the stack and continue iterating // - otherwise // - pop the bone, reset its transform and mark it as completed for (int skinIndex = 0; skinIndex < skinCount; skinIndex++) { std::unordered_set joints; std::unordered_set completed; std::stack stack; auto transforms = getBoneRestTranforms(entityId, skinIndex); for (int i = 0; i < instance->getJointCountAt(skinIndex); i++) { auto restTransform = transforms->at(i); const auto &joint = instance->getJointsAt(skinIndex)[i]; auto transformInstance = transformManager.getInstance(joint); transformManager.setTransform(transformInstance, restTransform); } } instance->getAnimator()->updateBoneMatrices(); } std::unique_ptr> SceneManager::getBoneRestTranforms(EntityId entityId, int skinIndex) { auto transforms = std::make_unique>(); auto *instance = getInstanceByEntityId(entityId); if (!instance) { auto *asset = getAssetByEntityId(entityId); if (asset) { instance = asset->getInstance(); } else { return transforms; } } auto skinCount = instance->getSkinCount(); TransformManager &transformManager = _engine->getTransformManager(); transforms->resize(instance->getJointCountAt(skinIndex)); // // To reset the skeleton to its rest pose, we could just call animator->resetBoneMatrices(), // which sets all bone matrices to the identity matrix. However, any subsequent calls to animator->updateBoneMatrices() // may result in unexpected poses, because that method uses each bone's transform to calculate // the bone matrices (and resetBoneMatrices does not affect this transform). // To "fully" reset the bone, we need to set its local transform (i.e. relative to its parent) // to its original orientation in rest pose. // // This can be calculated as: // // auto rest = inverse(parentTransformInModelSpace) * bindMatrix // // (where bindMatrix is the inverse of the inverseBindMatrix). // // The only requirement is that parent bone transforms are reset before child bone transforms. // glTF/Filament does not guarantee that parent bones are listed before child bones under a FilamentInstance. // We ensure that parents are reset before children by: // - pushing all bones onto a stack // - iterate over the stack // - look at the bone at the top of the stack // - if the bone already been reset, pop and continue iterating over the stack // - otherwise // - if the bone has a parent that has not been reset, push the parent to the top of the stack and continue iterating // - otherwise // - pop the bone, reset its transform and mark it as completed std::vector joints; std::unordered_set completed; std::stack stack; for (int i = 0; i < instance->getJointCountAt(skinIndex); i++) { const auto &joint = instance->getJointsAt(skinIndex)[i]; joints.push_back(joint); stack.push(joint); } while (!stack.empty()) { const auto &joint = stack.top(); // if we've already handled this node previously (e.g. when we encountered it as a parent), then skip if (completed.find(joint) != completed.end()) { stack.pop(); continue; } const auto transformInstance = transformManager.getInstance(joint); auto parent = transformManager.getParent(transformInstance); // we need to handle parent joints before handling their children // therefore, if this joint has a parent that hasn't been handled yet, // push the parent to the top of the stack and start the loop again const auto &jointIter = std::find(joints.begin(), joints.end(), joint); auto parentIter = std::find(joints.begin(), joints.end(), parent); if (parentIter != joints.end() && completed.find(parent) == completed.end()) { stack.push(parent); continue; } // otherwise let's get the inverse bind matrix for the joint math::mat4f inverseBindMatrix; bool found = false; for (int i = 0; i < instance->getJointCountAt(skinIndex); i++) { if (instance->getJointsAt(skinIndex)[i] == joint) { inverseBindMatrix = instance->getInverseBindMatricesAt(skinIndex)[i]; found = true; break; } } ASSERT_PRECONDITION(found, "Failed to find inverse bind matrix for joint %d", joint); // now we need to ascend back up the hierarchy to calculate the modelSpaceTransform math::mat4f modelSpaceTransform; while (parentIter != joints.end()) { const auto transformInstance = transformManager.getInstance(parent); const auto parentIndex = distance(joints.begin(), parentIter); const auto transform = transforms->at(parentIndex); modelSpaceTransform = transform * modelSpaceTransform; parent = transformManager.getParent(transformInstance); parentIter = std::find(joints.begin(), joints.end(), parent); } const auto bindMatrix = inverse(inverseBindMatrix); const auto inverseModelSpaceTransform = inverse(modelSpaceTransform); const auto jointIndex = distance(joints.begin(), jointIter); transforms->at(jointIndex) = inverseModelSpaceTransform * bindMatrix; completed.insert(joint); stack.pop(); } return transforms; } bool SceneManager::updateBoneMatrices(EntityId entityId) { auto *instance = getInstanceByEntityId(entityId); if (!instance) { auto *asset = getAssetByEntityId(entityId); if (asset) { instance = asset->getInstance(); } else { return false; } } instance->getAnimator()->updateBoneMatrices(); return true; } bool SceneManager::setTransform(EntityId entityId, math::mat4f transform) { auto &tm = _engine->getTransformManager(); const auto &entity = Entity::import(entityId); auto transformInstance = tm.getInstance(entity); if (!transformInstance) { return false; } tm.setTransform(transformInstance, transform); return true; } bool SceneManager::addBoneAnimation(EntityId parentEntity, int skinIndex, int boneIndex, const float *const frameData, int numFrames, float frameLengthInMs, float fadeOutInSecs, float fadeInInSecs, float maxDelta) { std::lock_guard lock(_mutex); auto *instance = getInstanceByEntityId(parentEntity); if (!instance) { auto *asset = getAssetByEntityId(parentEntity); if (asset) { instance = asset->getInstance(); } else { return false; } } BoneAnimation animation; animation.boneIndex = boneIndex; animation.frameData.clear(); const auto &inverseBindMatrix = instance->getInverseBindMatricesAt(skinIndex)[boneIndex]; for (int i = 0; i < numFrames; i++) { math::mat4f frame( frameData[i * 16], frameData[(i * 16) + 1], frameData[(i * 16) + 2], frameData[(i * 16) + 3], frameData[(i * 16) + 4], frameData[(i * 16) + 5], frameData[(i * 16) + 6], frameData[(i * 16) + 7], frameData[(i * 16) + 8], frameData[(i * 16) + 9], frameData[(i * 16) + 10], frameData[(i * 16) + 11], frameData[(i * 16) + 12], frameData[(i * 16) + 13], frameData[(i * 16) + 14], frameData[(i * 16) + 15]); animation.frameData.push_back(frame); } animation.frameLengthInMs = frameLengthInMs; animation.start = std::chrono::high_resolution_clock::now(); animation.reverse = false; animation.durationInSecs = (frameLengthInMs * numFrames) / 1000.0f; animation.lengthInFrames = numFrames; animation.frameLengthInMs = frameLengthInMs; animation.fadeOutInSecs = fadeOutInSecs; animation.fadeInInSecs = fadeInInSecs; animation.maxDelta = maxDelta; animation.skinIndex = skinIndex; if (!_animationComponentManager->hasComponent(instance->getRoot())) { Log("ERROR: specified entity is not animatable (has no animation component attached)."); return false; } auto animationComponentInstance = _animationComponentManager->getInstance(instance->getRoot()); auto &animationComponent = _animationComponentManager->elementAt<0>(animationComponentInstance); auto &boneAnimations = animationComponent.boneAnimations; boneAnimations.emplace_back(animation); return true; } void SceneManager::playAnimation(EntityId entityId, int index, bool loop, bool reverse, bool replaceActive, float crossfade, float startOffset) { std::lock_guard lock(_mutex); if (index < 0) { Log("ERROR: glTF animation index must be greater than zero."); return; } auto *instance = getInstanceByEntityId(entityId); if (!instance) { auto *asset = getAssetByEntityId(entityId); if (asset) { instance = asset->getInstance(); } else { return; } } if (!_animationComponentManager->hasComponent(instance->getRoot())) { Log("ERROR: specified entity is not animatable (has no animation component attached)."); return; } auto animationComponentInstance = _animationComponentManager->getInstance(instance->getRoot()); auto &animationComponent = _animationComponentManager->elementAt<0>(animationComponentInstance); if (replaceActive) { if (animationComponent.gltfAnimations.size() > 0) { auto &last = animationComponent.gltfAnimations.back(); animationComponent.fadeGltfAnimationIndex = last.index; animationComponent.fadeDuration = crossfade; auto now = high_resolution_clock::now(); auto elapsedInSecs = float(std::chrono::duration_cast(now - last.start).count()) / 1000.0f; animationComponent.fadeOutAnimationStart = elapsedInSecs; animationComponent.gltfAnimations.clear(); } else { animationComponent.fadeGltfAnimationIndex = -1; animationComponent.fadeDuration = 0.0f; } } else if (crossfade > 0) { Log("ERROR: crossfade only supported when replaceActive is true."); return; } else { animationComponent.fadeGltfAnimationIndex = -1; animationComponent.fadeDuration = 0.0f; } GltfAnimation animation; animation.startOffset = startOffset; animation.index = index; animation.start = std::chrono::high_resolution_clock::now(); animation.loop = loop; animation.reverse = reverse; animation.durationInSecs = instance->getAnimator()->getAnimationDuration(index); bool found = false; // don't play the animation if it's already running for (int i = 0; i < animationComponent.gltfAnimations.size(); i++) { if (animationComponent.gltfAnimations[i].index == index) { found = true; break; } } if (!found) { animationComponent.gltfAnimations.push_back(animation); } } void SceneManager::stopAnimation(EntityId entityId, int index) { std::lock_guard lock(_mutex); auto *instance = getInstanceByEntityId(entityId); if (!instance) { auto *asset = getAssetByEntityId(entityId); if (asset) { instance = asset->getInstance(); } else { Log("Failed to find instance for entity"); return; } } auto animationComponentInstance = _animationComponentManager->getInstance(instance->getRoot()); auto &animationComponent = _animationComponentManager->elementAt<0>(animationComponentInstance); auto erased = std::remove_if(animationComponent.gltfAnimations.begin(), animationComponent.gltfAnimations.end(), [=](GltfAnimation &anim) { return anim.index == index; }); animationComponent.gltfAnimations.erase(erased, animationComponent.gltfAnimations.end()); } void SceneManager::loadTexture(EntityId entity, const char *resourcePath, int renderableIndex) { // const auto &pos = _instances.find(entity); // if (pos == _instances.end()) // { // Log("ERROR: asset not found for entity."); // return; // } // const auto *instance = pos->second; // Log("Loading texture at %s for renderableIndex %d", resourcePath, renderableIndex); // string rp(resourcePath); // if (asset.texture) // { // _engine->destroy(asset.texture); // asset.texture = nullptr; // } // ResourceBuffer imageResource = _resourceLoaderWrapper->load(rp.c_str()); // StreamBufferAdapter sb((char *)imageResource.data, (char *)imageResource.data + imageResource.size); // istream *inputStream = new std::istream(&sb); // LinearImage *image = new LinearImage(ImageDecoder::decode( // *inputStream, rp.c_str(), ImageDecoder::ColorSpace::SRGB)); // if (!image->isValid()) // { // Log("Invalid image : %s", rp.c_str()); // delete inputStream; // _resourceLoaderWrapper->free(imageResource); // return; // } // uint32_t channels = image->getChannels(); // uint32_t w = image->getWidth(); // uint32_t h = image->getHeight(); // asset.texture = Texture::Builder() // .width(w) // .height(h) // .levels(0xff) // .format(channels == 3 ? Texture::InternalFormat::RGB16F // : Texture::InternalFormat::RGBA16F) // .sampler(Texture::Sampler::SAMPLER_2D) // .build(*_engine); // Texture::PixelBufferDescriptor::Callback freeCallback = [](void *buf, size_t, // void *data) // { // delete reinterpret_cast(data); // }; // Texture::PixelBufferDescriptor buffer( // image->getPixelRef(), size_t(w * h * channels * sizeof(float)), // channels == 3 ? Texture::Format::RGB : Texture::Format::RGBA, // Texture::Type::FLOAT, freeCallback); // asset.texture->setImage(*_engine, 0, std::move(buffer)); // MaterialInstance *const *inst = instance->getMaterialInstances(); // size_t mic = instance->getMaterialInstanceCount(); // Log("Material instance count : %d", mic); // auto sampler = TextureSampler(); // inst[0]->setParameter("baseColorIndex", 0); // inst[0]->setParameter("baseColorMap", asset.texture, sampler); // delete inputStream; // _resourceLoaderWrapper->free(imageResource); } void SceneManager::setAnimationFrame(EntityId entityId, int animationIndex, int animationFrame) { auto *instance = getInstanceByEntityId(entityId); auto offset = 60 * animationFrame * 1000; // TODO - don't hardcore 60fps framerate instance->getAnimator()->applyAnimation(animationIndex, offset); instance->getAnimator()->updateBoneMatrices(); } float SceneManager::getAnimationDuration(EntityId entity, int animationIndex) { auto *instance = getInstanceByEntityId(entity); if (!instance) { auto *asset = getAssetByEntityId(entity); if (!asset) { return -1.0f; } instance = asset->getInstance(); } return instance->getAnimator()->getAnimationDuration(animationIndex); } unique_ptr> SceneManager::getAnimationNames(EntityId entity) { const auto &pos = _instances.find(entity); unique_ptr> names = std::make_unique>(); FilamentInstance *instance; if (pos != _instances.end()) { instance = pos->second; } else { const auto &assetPos = _assets.find(entity); if (assetPos != _assets.end()) { instance = assetPos->second->getInstance(); } else { Log("Could not resolve entity ID %d to FilamentInstance or FilamentAsset"); return names; } } size_t count = instance->getAnimator()->getAnimationCount(); for (size_t i = 0; i < count; i++) { names->push_back(instance->getAnimator()->getAnimationName(i)); } return names; } unique_ptr> SceneManager::getMorphTargetNames(EntityId assetEntityId, EntityId child) { unique_ptr> names = std::make_unique>(); const auto *instance = getInstanceByEntityId(assetEntityId); if (!instance) { auto asset = getAssetByEntityId(assetEntityId); if (!asset) { Log("Warning - failed to find specified asset. This is unexpected and probably indicates you are passing the wrong entity"); return names; } instance = asset->getInstance(); if (!instance) { Log("Warning - failed to find instance for specified asset. This is unexpected and probably indicates you are passing the wrong entity"); return names; } } const auto *asset = instance->getAsset(); const utils::Entity *entities = asset->getEntities(); const utils::Entity target = Entity::import(child); for (int i = 0; i < asset->getEntityCount(); i++) { utils::Entity e = entities[i]; if (e == target) { size_t count = asset->getMorphTargetCountAt(e); for (int j = 0; j < count; j++) { const char *morphName = asset->getMorphTargetNameAt(e, j); names->push_back(morphName); } break; } } return names; } unique_ptr> SceneManager::getBoneNames(EntityId assetEntityId, int skinIndex) { unique_ptr> names = std::make_unique>(); auto *instance = getInstanceByEntityId(assetEntityId); if (!instance) { auto *asset = getAssetByEntityId(assetEntityId); if (asset) { instance = asset->getInstance(); } else { Log("ERROR: failed to find instance for entity %d", assetEntityId); return names; } } size_t skinCount = instance->getSkinCount(); if (skinCount > 1) { Log("WARNING - skin count > 1 not currently implemented. This will probably not work"); } size_t numJoints = instance->getJointCountAt(skinIndex); auto joints = instance->getJointsAt(skinIndex); for (int i = 0; i < numJoints; i++) { const char *jointName = _ncm->getName(_ncm->getInstance(joints[i])); names->push_back(jointName); } return names; } void SceneManager::transformToUnitCube(EntityId entityId) { const auto *instance = getInstanceByEntityId(entityId); if (!instance) { auto asset = getAssetByEntityId(entityId); if (asset) { instance = asset->getInstance(); } else { return; } } auto &tm = _engine->getTransformManager(); auto aabb = instance->getBoundingBox(); auto center = aabb.center(); auto halfExtent = aabb.extent(); auto maxExtent = max(halfExtent) * 2; auto scaleFactor = 2.0f / maxExtent; auto transform = math::mat4f::scaling(scaleFactor) * math::mat4f::translation(-center); tm.setTransform(tm.getInstance(instance->getRoot()), transform); } EntityId SceneManager::getParent(EntityId childEntityId) { auto &tm = _engine->getTransformManager(); const auto child = Entity::import(childEntityId); const auto &childInstance = tm.getInstance(child); auto parent = tm.getParent(childInstance); return Entity::smuggle(parent); } void SceneManager::setParent(EntityId childEntityId, EntityId parentEntityId, bool preserveScaling) { auto &tm = _engine->getTransformManager(); const auto child = Entity::import(childEntityId); const auto parent = Entity::import(parentEntityId); const auto &parentInstance = tm.getInstance(parent); const auto &childInstance = tm.getInstance(child); if(!parentInstance.isValid()) { Log("Parent instance is not valid"); return; } if(!childInstance.isValid()) { Log("Child instance is not valid"); return; } Log("Parenting child entity %d to new parent entity %d", childEntityId, parentEntityId); if (preserveScaling) { auto parentTransform = tm.getWorldTransform(parentInstance); math::float3 parentTranslation; math::quatf parentRotation; math::float3 parentScale; decomposeMatrix(parentTransform, &parentTranslation, &parentRotation, &parentScale); auto childTransform = tm.getTransform(childInstance); math::float3 childTranslation; math::quatf childRotation; math::float3 childScale; decomposeMatrix(childTransform, &childTranslation, &childRotation, &childScale); childScale = childScale * (1 / parentScale); childTransform = composeMatrix(childTranslation, childRotation, childScale); tm.setTransform(childInstance, childTransform); } tm.setParent(childInstance, parentInstance); } void SceneManager::addCollisionComponent(EntityId entityId, void (*onCollisionCallback)(const EntityId entityId1, const EntityId entityId2), bool affectsTransform) { std::lock_guard lock(_mutex); const auto *instance = getInstanceByEntityId(entityId); if (!instance) { auto asset = getAssetByEntityId(entityId); if (!asset) { return; } else { instance = asset->getInstance(); } } auto collisionInstance = _collisionComponentManager->addComponent(instance->getRoot()); _collisionComponentManager->elementAt<0>(collisionInstance) = instance->getBoundingBox(); _collisionComponentManager->elementAt<1>(collisionInstance) = onCollisionCallback; _collisionComponentManager->elementAt<2>(collisionInstance) = affectsTransform; } void SceneManager::removeCollisionComponent(EntityId entityId) { std::lock_guard lock(_mutex); const auto *instance = getInstanceByEntityId(entityId); if (!instance) { auto asset = getAssetByEntityId(entityId); if (!asset) { return; } else { instance = asset->getInstance(); } } _collisionComponentManager->removeComponent(instance->getRoot()); } void SceneManager::testCollisions(EntityId entityId) { const auto *instance = getInstanceByEntityId(entityId); if (!instance) { auto asset = getAssetByEntityId(entityId); if (asset) { instance = asset->getInstance(); } else { return; } } const auto &tm = _engine->getTransformManager(); auto transformInstance = tm.getInstance(instance->getRoot()); auto worldTransform = tm.getWorldTransform(transformInstance); auto aabb = instance->getBoundingBox(); aabb = aabb.transform(worldTransform); _collisionComponentManager->collides(instance->getRoot(), aabb); } void SceneManager::updateAnimations() { std::lock_guard lock(_mutex); _animationComponentManager->update(); } void SceneManager::updateTransforms() { std::lock_guard lock(_mutex); auto &tm = _engine->getTransformManager(); for (const auto &[entityId, transformUpdate] : _transformUpdates) { const auto &pos = _instances.find(entityId); bool isCollidable = true; Entity entity; filament::TransformManager::Instance transformInstance; filament::math::mat4f transform; Aabb boundingBox; if (pos == _instances.end()) { isCollidable = false; entity = Entity::import(entityId); } else { const auto *instance = pos->second; entity = instance->getRoot(); boundingBox = instance->getBoundingBox(); } transformInstance = tm.getInstance(entity); transform = tm.getTransform(transformInstance); math::float3 newTranslation = std::get<0>(transformUpdate); bool newTranslationRelative = std::get<1>(transformUpdate); math::quatf newRotation = std::get<2>(transformUpdate); bool newRotationRelative = std::get<3>(transformUpdate); float newScale = std::get<4>(transformUpdate); math::float3 translation; math::quatf rotation; math::float3 scale; decomposeMatrix(transform, &translation, &rotation, &scale); if (newRotationRelative) { rotation = normalize(rotation * newRotation); } else { rotation = newRotation; } math::float3 relativeTranslation; if (newTranslationRelative) { math::mat3f rotationMatrix(rotation); relativeTranslation = rotationMatrix * newTranslation; translation += relativeTranslation; } else { relativeTranslation = newTranslation - translation; translation = newTranslation; } transform = composeMatrix(translation, rotation, scale); if (isCollidable) { auto transformedBB = boundingBox.transform(transform); auto collisionAxes = _collisionComponentManager->collides(entity, transformedBB); if (collisionAxes.size() == 1) { auto globalAxis = collisionAxes[0]; globalAxis *= norm(relativeTranslation); auto newRelativeTranslation = relativeTranslation + globalAxis; translation -= relativeTranslation; translation += newRelativeTranslation; transform = composeMatrix(translation, rotation, scale); } else if (collisionAxes.size() > 1) { translation -= relativeTranslation; transform = composeMatrix(translation, rotation, scale); } } tm.setTransform(transformInstance, transform); } _transformUpdates.clear(); } void SceneManager::setScale(EntityId entityId, float newScale) { std::lock_guard lock(_mutex); auto entity = Entity::import(entityId); if (entity.isNull()) { Log("Failed to find entity under ID %d", entityId); return; } auto &tm = _engine->getTransformManager(); auto transformInstance = tm.getInstance(entity); auto transform = tm.getTransform(transformInstance); math::float3 translation; math::quatf rotation; math::float3 scale; decomposeMatrix(transform, &translation, &rotation, &scale); auto newTransform = composeMatrix(translation, rotation, newScale); tm.setTransform(transformInstance, newTransform); } void SceneManager::setPosition(EntityId entityId, float x, float y, float z) { std::lock_guard lock(_mutex); auto entity = Entity::import(entityId); if (entity.isNull()) { Log("Failed to find entity under ID %d", entityId); return; } auto &tm = _engine->getTransformManager(); auto transformInstance = tm.getInstance(entity); auto transform = tm.getTransform(transformInstance); math::float3 translation; math::quatf rotation; math::float3 scale; decomposeMatrix(transform, &translation, &rotation, &scale); translation = math::float3(x, y, z); auto newTransform = composeMatrix(translation, rotation, scale); tm.setTransform(transformInstance, newTransform); } void SceneManager::setRotation(EntityId entityId, float rads, float x, float y, float z, float w) { std::lock_guard lock(_mutex); auto entity = Entity::import(entityId); if (entity.isNull()) { Log("Failed to find entity under ID %d", entityId); return; } auto &tm = _engine->getTransformManager(); auto transformInstance = tm.getInstance(entity); auto transform = tm.getTransform(transformInstance); math::float3 translation; math::quatf rotation; math::float3 scale; decomposeMatrix(transform, &translation, &rotation, &scale); rotation = math::quatf(w, x, y, z); auto newTransform = composeMatrix(translation, rotation, scale); tm.setTransform(transformInstance, newTransform); } void SceneManager::queueRelativePositionUpdateWorldAxis(EntityId entity, float viewportCoordX, float viewportCoordY, float x, float y, float z) { auto worldAxis = math::float3{x, y, z}; // Get the camera const auto &camera = _view->getCamera(); const auto &vp = _view->getViewport(); auto viewMatrix = camera.getViewMatrix(); math::float3 cameraPosition = camera.getPosition(); math::float3 cameraForward = -viewMatrix.upperLeft()[2]; // Scale the viewport movement to NDC coordinates view axis math::float2 viewportMovementNDC(viewportCoordX / (vp.width / 2), viewportCoordY / (vp.height / 2)); // calculate the translation axis in view space math::float3 viewSpaceAxis = viewMatrix.upperLeft() * worldAxis; // Apply projection matrix to get clip space axis math::float4 clipAxis = camera.getProjectionMatrix() * math::float4(viewSpaceAxis, 0.0f); // Perform perspective division to get the translation axis in normalized device coordinates (NDC) math::float2 ndcAxis = (clipAxis.xyz / clipAxis.w).xy; const float epsilon = 1e-6f; bool isAligned = false; if (std::isnan(ndcAxis.x) || std::isnan(ndcAxis.y) || length(ndcAxis) < epsilon || std::abs(dot(normalize(worldAxis), cameraForward)) > 0.99f) { isAligned = true; // Find a suitable perpendicular axis: math::float3 perpendicularAxis; if (std::abs(worldAxis.x) < epsilon && std::abs(worldAxis.z) < epsilon) { // If worldAxis is (0, y, 0), use (1, 0, 0) perpendicularAxis = {1.0f, 0.0f, 0.0f}; } else { // Otherwise, calculate a perpendicular vector perpendicularAxis = normalize(cross(cameraForward, worldAxis)); } ndcAxis = (camera.getProjectionMatrix() * math::float4(viewMatrix.upperLeft() * perpendicularAxis, 0.0f)).xy; if (std::isnan(ndcAxis.x) || std::isnan(ndcAxis.y)) { return; } } // project the viewport movement (i.e pointer drag) vector onto the translation axis // this gives the proportion of the pointer drag vector to translate along the translation axis float projectedMovement = dot(viewportMovementNDC, normalize(ndcAxis)); auto translationNDC = projectedMovement * normalize(ndcAxis); float dotProduct = dot(normalize(worldAxis), cameraForward); // Ensure minimum translation and correct direction const float minTranslation = 0.01f; if (isAligned || std::abs(projectedMovement) < minTranslation) { // Use the dominant component of the viewport movement float dominantMovement = std::abs(viewportMovementNDC.x) > std::abs(viewportMovementNDC.y) ? viewportMovementNDC.x : viewportMovementNDC.y; projectedMovement = (std::abs(dominantMovement) < minTranslation) ? minTranslation : std::abs(dominantMovement); projectedMovement *= (dominantMovement >= 0) ? 1.0f : -1.0f; translationNDC = projectedMovement * normalize(ndcAxis); } // Log("projectedMovement %f dotProduct %f", projectedMovement, dotProduct); // Get the camera's field of view and aspect ratio float fovY = camera.getFieldOfViewInDegrees(filament::Camera::Fov::VERTICAL); float fovX = camera.getFieldOfViewInDegrees(filament::Camera::Fov::HORIZONTAL); // Convert to radians fovY = (fovY / 180) * M_PI; fovX = (fovX / 180) * M_PI; float aspectRatio = static_cast(vp.width) / vp.height; auto &transformManager = _engine->getTransformManager(); auto transformInstance = transformManager.getInstance(Entity::import(entity)); const auto &transform = transformManager.getWorldTransform(transformInstance); math::float3 translation; math::quatf rotation; math::float3 scale; decomposeMatrix(transform, &translation, &rotation, &scale); const auto entityWorldPosition = transform * math::float4{0.0f, 0.0f, 0.0f, 1.0f}; float distanceToCamera = length(entityWorldPosition.xyz - camera.getPosition()); // Calculate the height of the view frustum at the given distance float frustumHeight = 2.0f * distanceToCamera * tan(fovY * 0.5f); // Calculate the width of the view frustum at the given distance float frustumWidth = frustumHeight * aspectRatio; // Convert projected viewport movement to world space distance float worldDistance = length(math::float2{(translationNDC / 2) * math::float2{frustumWidth, frustumHeight}}); // Determine the sign based on the alignment of world axis and camera forward float sign = (dotProduct >= 0) ? -1.0f : 1.0f; // If aligned, use the sign of the projected movement instead if (isAligned) { sign = (projectedMovement >= 0) ? 1.0f : -1.0f; } else if (projectedMovement < 0) { sign *= -1.0f; } // Flip the sign for the Z-axis if (std::abs(z) > 0.001) { sign *= -1.0f; } worldDistance *= sign; auto newWorldTranslation = worldAxis * worldDistance; queuePositionUpdate(entity, newWorldTranslation.x, newWorldTranslation.y, newWorldTranslation.z, true); } void SceneManager::queuePositionUpdate(EntityId entity, float x, float y, float z, bool relative) { std::lock_guard lock(_mutex); const auto &pos = _transformUpdates.find(entity); if (pos == _transformUpdates.end()) { _transformUpdates.emplace(entity, std::make_tuple(math::float3(), true, math::quatf(1.0f), true, 1.0f)); } auto curr = _transformUpdates[entity]; auto &trans = std::get<0>(curr); trans.x = x; trans.y = y; trans.z = z; auto &isRelative = std::get<1>(curr); isRelative = relative; _transformUpdates[entity] = curr; } void SceneManager::queueRotationUpdate(EntityId entity, float rads, float x, float y, float z, float w, bool relative) { std::lock_guard lock(_mutex); const auto &pos = _transformUpdates.find(entity); if (pos == _transformUpdates.end()) { _transformUpdates.emplace(entity, std::make_tuple(math::float3(), true, math::quatf(1.0f), true, 1.0f)); } auto curr = _transformUpdates[entity]; auto &rot = std::get<2>(curr); rot.w = w; rot.x = x; rot.y = y; rot.z = z; auto &isRelative = std::get<3>(curr); isRelative = relative; _transformUpdates[entity] = curr; } const utils::Entity *SceneManager::getCameraEntities(EntityId entityId) { const auto *instance = getInstanceByEntityId(entityId); if (!instance) { auto asset = getAssetByEntityId(entityId); if (asset) { instance = asset->getInstance(); } else { return nullptr; } } return instance->getAsset()->getCameraEntities(); } size_t SceneManager::getCameraEntityCount(EntityId entityId) { const auto *instance = getInstanceByEntityId(entityId); if (!instance) { auto asset = getAssetByEntityId(entityId); if (asset) { instance = asset->getInstance(); } else { return -1; } } return instance->getAsset()->getCameraEntityCount(); } const utils::Entity *SceneManager::getLightEntities(EntityId entityId) noexcept { const auto *instance = getInstanceByEntityId(entityId); if (!instance) { auto asset = getAssetByEntityId(entityId); if (asset) { instance = asset->getInstance(); } else { return nullptr; } } return instance->getAsset()->getLightEntities(); } size_t SceneManager::getLightEntityCount(EntityId entityId) noexcept { const auto *instance = getInstanceByEntityId(entityId); if (!instance) { auto asset = getAssetByEntityId(entityId); if (asset) { instance = asset->getInstance(); } else { return -1; } } return instance->getAsset()->getLightEntityCount(); } const char *SceneManager::getNameForEntity(EntityId entityId) { const auto &entity = Entity::import(entityId); auto nameInstance = _ncm->getInstance(entity); if (!nameInstance.isValid()) { Log("Failed to find name instance for entity ID %d", entityId); return nullptr; } return _ncm->getName(nameInstance); } int SceneManager::getEntityCount(EntityId entityId, bool renderableOnly) { const auto *instance = getInstanceByEntityId(entityId); if (!instance) { auto asset = getAssetByEntityId(entityId); if (asset) { instance = asset->getInstance(); } else { return 0; } } if (renderableOnly) { int count = 0; const auto &rm = _engine->getRenderableManager(); const Entity *entities = instance->getEntities(); for (int i = 0; i < instance->getEntityCount(); i++) { if (rm.hasComponent(entities[i])) { count++; } } return count; } return instance->getEntityCount(); } void SceneManager::getEntities(EntityId entityId, bool renderableOnly, EntityId *out) { const auto *instance = getInstanceByEntityId(entityId); if (!instance) { auto asset = getAssetByEntityId(entityId); if (asset) { instance = asset->getInstance(); } else { return; } } if (renderableOnly) { int count = 0; const auto &rm = _engine->getRenderableManager(); const Entity *entities = instance->getEntities(); int offset = 0; for (int i = 0; i < instance->getEntityCount(); i++) { if (rm.hasComponent(entities[i])) { out[offset] = Entity::smuggle(entities[i]); offset++; } } } else { for (int i = 0; i < instance->getEntityCount(); i++) { out[i] = Entity::smuggle(instance->getEntities()[i]); } } } const char *SceneManager::getEntityNameAt(EntityId entityId, int index, bool renderableOnly) { const auto *instance = getInstanceByEntityId(entityId); if (!instance) { auto asset = getAssetByEntityId(entityId); if (asset) { instance = asset->getInstance(); } else { return nullptr; } } int found = -1; if (renderableOnly) { int count = 0; const auto &rm = _engine->getRenderableManager(); const Entity *entities = instance->getEntities(); for (int i = 0; i < instance->getEntityCount(); i++) { if (rm.hasComponent(entities[i])) { if (count == index) { found = i; break; } count++; } } } else { found = index; } if (found >= instance->getEntityCount()) { Log("ERROR: index %d greater than number of child entities.", found); return nullptr; } const utils::Entity entity = instance->getEntities()[found]; auto inst = _ncm->getInstance(entity); auto name = _ncm->getName(inst); return name; } void SceneManager::setPriority(EntityId entityId, int priority) { auto &rm = _engine->getRenderableManager(); auto renderableInstance = rm.getInstance(Entity::import(entityId)); if (!renderableInstance.isValid()) { Log("Error: invalid renderable, did you pass the correct entity?", priority); return; } rm.setPriority(renderableInstance, priority); Log("Set instance renderable priority to %d", priority); } Aabb2 SceneManager::getBoundingBox(EntityId entityId) { const auto &camera = _view->getCamera(); const auto &viewport = _view->getViewport(); auto &tcm = _engine->getTransformManager(); auto &rcm = _engine->getRenderableManager(); // Get the projection and view matrices math::mat4 projMatrix = camera.getProjectionMatrix(); math::mat4 viewMatrix = camera.getViewMatrix(); math::mat4 vpMatrix = projMatrix * viewMatrix; auto entity = Entity::import(entityId); auto renderable = rcm.getInstance(entity); auto worldTransform = tcm.getWorldTransform(tcm.getInstance(entity)); // Get the axis-aligned bounding box in model space Box aabb = rcm.getAxisAlignedBoundingBox(renderable); auto min = aabb.getMin(); auto max = aabb.getMax(); // Transform the 8 corners of the AABB to clip space std::array corners = { worldTransform * math::float4(min.x, min.y, min.z, 1.0f), worldTransform * math::float4(max.x, min.y, min.z, 1.0f), worldTransform * math::float4(min.x, max.y, min.z, 1.0f), worldTransform * math::float4(max.x, max.y, min.z, 1.0f), worldTransform * math::float4(min.x, min.y, max.z, 1.0f), worldTransform * math::float4(max.x, min.y, max.z, 1.0f), worldTransform * math::float4(min.x, max.y, max.z, 1.0f), worldTransform * math::float4(max.x, max.y, max.z, 1.0f)}; // Project corners to clip space and convert to viewport space float minX = std::numeric_limits::max(); float minY = std::numeric_limits::max(); float maxX = std::numeric_limits::lowest(); float maxY = std::numeric_limits::lowest(); for (const auto &corner : corners) { math::float4 clipSpace = vpMatrix * corner; // Check if the point is behind the camera if (clipSpace.w <= 0) { continue; // Skip this point } // Perform perspective division math::float3 ndcSpace = clipSpace.xyz / clipSpace.w; // Clamp NDC coordinates to [-1, 1] range ndcSpace.x = std::max(-1.0f, std::min(1.0f, ndcSpace.x)); ndcSpace.y = std::max(-1.0f, std::min(1.0f, ndcSpace.y)); // Convert NDC to viewport space float viewportX = (ndcSpace.x * 0.5f + 0.5f) * viewport.width; float viewportY = (1.0f - (ndcSpace.y * 0.5f + 0.5f)) * viewport.height; // Flip Y-axis minX = std::min(minX, viewportX); minY = std::min(minY, viewportY); maxX = std::max(maxX, viewportX); maxY = std::max(maxY, viewportY); } return Aabb2{minX, minY, maxX, maxY}; } void SceneManager::setLayerEnabled(int layer, bool enabled) { _view->setLayerEnabled(layer, enabled); } } } // namespace thermion_filament