/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "FilamentViewer.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "math.h" #include "FFilamentInstance.h" #include "FFilamentAsset.h" #include #include #include #include #include #include #include #include #include "Log.h" #include #include #include #include #include using namespace filament; using namespace filament::math; using namespace gltfio; using namespace utils; using namespace std::chrono; namespace gltfio { MaterialProvider* createUbershaderLoader(filament::Engine* engine); } namespace filament { class IndirectLight; class LightManager; } namespace gltfio { MaterialProvider* createGPUMorphShaderLoader( const void* opaqueData, uint64_t opaqueDataSize, const void* fadeData, uint64_t fadeDataSize, Engine* engine); void decomposeMatrix(const filament::math::mat4f& mat, filament::math::float3* translation, filament::math::quatf* rotation, filament::math::float3* scale); } namespace polyvox { const double kNearPlane = 0.05; // 5 cm const double kFarPlane = 1000.0; // 1 km const float kScaleMultiplier = 100.0f; const float kAperture = 16.0f; const float kShutterSpeed = 1.0f / 125.0f; const float kSensitivity = 100.0f; filament::math::mat4f composeMatrix(const filament::math::float3& translation, const filament::math::quatf& rotation, const filament::math::float3& scale) { float tx = translation[0]; float ty = translation[1]; float tz = translation[2]; float qx = rotation[0]; float qy = rotation[1]; float qz = rotation[2]; float qw = rotation[3]; float sx = scale[0]; float sy = scale[1]; float sz = scale[2]; return filament::math::mat4f( (1 - 2 * qy*qy - 2 * qz*qz) * sx, (2 * qx*qy + 2 * qz*qw) * sx, (2 * qx*qz - 2 * qy*qw) * sx, 0.f, (2 * qx*qy - 2 * qz*qw) * sy, (1 - 2 * qx*qx - 2 * qz*qz) * sy, (2 * qy*qz + 2 * qx*qw) * sy, 0.f, (2 * qx*qz + 2 * qy*qw) * sz, (2 * qy*qz - 2 * qx*qw) * sz, (1 - 2 * qx*qx - 2 * qy*qy) * sz, 0.f, tx, ty, tz, 1.f); } FilamentViewer::FilamentViewer( void* layer, const char* opaqueShaderPath, const char* fadeShaderPath, LoadResource loadResource, FreeResource freeResource) : _layer(layer), _loadResource(loadResource), _freeResource(freeResource), opaqueShaderResources(nullptr, 0, 0), fadeShaderResources(nullptr, 0, 0), _assetBuffer(nullptr, 0, 0) { _engine = Engine::create(Engine::Backend::OPENGL); _renderer = _engine->createRenderer(); _renderer->setDisplayInfo({ .refreshRate = 60.0f, .presentationDeadlineNanos = (uint64_t)0, .vsyncOffsetNanos = (uint64_t)0 }); _scene = _engine->createScene(); Entity camera = EntityManager::get().create(); _mainCamera = _engine->createCamera(camera); _view = _engine->createView(); _view->setScene(_scene); _view->setCamera(_mainCamera); _cameraFocalLength = 28.0f; _mainCamera->setExposure(kAperture, kShutterSpeed, kSensitivity); _swapChain = _engine->createSwapChain(_layer); View::DynamicResolutionOptions options; options.enabled = true; // options.homogeneousScaling = homogeneousScaling; // options.minScale = filament::math::float2{ minScale }; // options.maxScale = filament::math::float2{ maxScale }; //options.sharpness = sharpness; options.quality = View::QualityLevel::MEDIUM;; _view->setDynamicResolutionOptions(options); View::MultiSampleAntiAliasingOptions multiSampleAntiAliasingOptions; multiSampleAntiAliasingOptions.enabled = true; _view->setMultiSampleAntiAliasingOptions(multiSampleAntiAliasingOptions); _materialProvider = gltfio::createUbershaderLoader(_engine); EntityManager& em = EntityManager::get(); _ncm = new NameComponentManager(em); _assetLoader = AssetLoader::create({_engine, _materialProvider, _ncm, &em}); _resourceLoader = new ResourceLoader( {.engine = _engine, .normalizeSkinningWeights = true, .recomputeBoundingBoxes = false}); manipulator = Manipulator::Builder().orbitHomePosition(0.0f, 0.0f, 0.0f).targetPosition(0.0f, 0.0f, -4.0f).build(Mode::ORBIT); _asset = nullptr; } FilamentViewer::~FilamentViewer() { } Renderer* FilamentViewer::getRenderer() { return _renderer; } void FilamentViewer::createSwapChain(void* surface) { _swapChain = _engine->createSwapChain(surface); // Log("swapchain created."); } void FilamentViewer::destroySwapChain() { if(_swapChain) { _engine->destroy(_swapChain); _swapChain = nullptr; } // Log("swapchain destroyed."); } void FilamentViewer::applyWeights(float* weights, int count) { for (size_t i = 0, c = _asset->getEntityCount(); i != c; ++i) { _asset->setMorphWeights( _asset->getEntities()[i], weights, count ); } } void FilamentViewer::loadResources(string relativeResourcePath) { const char* const* const resourceUris = _asset->getResourceUris(); const size_t resourceUriCount = _asset->getResourceUriCount(); Log("Loading %d resources for asset", resourceUriCount); for (size_t i = 0; i < resourceUriCount; i++) { string uri = relativeResourcePath + string(resourceUris[i]); ResourceBuffer buf = _loadResource(uri.c_str()); // using FunctionCallback = std::function; // auto cb = [&] (void * ptr, unsigned int len, void * misc) { // }; // FunctionCallback fcb = cb; ResourceLoader::BufferDescriptor b( buf.data, buf.size); _resourceLoader->addResourceData(resourceUris[i], std::move(b)); _freeResource(buf); } _resourceLoader->loadResources(_asset); const Entity* entities = _asset->getEntities(); RenderableManager& rm = _engine->getRenderableManager(); for(int i =0; i< _asset->getEntityCount(); i++) { Entity e = entities[i]; auto inst = rm.getInstance(e); rm.setCulling(inst, false); } _animator = _asset->getAnimator(); _scene->addEntities(_asset->getEntities(), _asset->getEntityCount()); }; void FilamentViewer::releaseSourceAssets() { Log("Releasing source data"); _asset->releaseSourceData(); // _freeResource(opaqueShaderResources); // _freeResource(fadeShaderResources); } void FilamentViewer::loadGlb(const char* const uri) { Log("Loading GLB at URI %s", uri); if(_asset) { _resourceLoader->evictResourceData(); _scene->removeEntities(_asset->getEntities(), _asset->getEntityCount()); _assetLoader->destroyAsset(_asset); _freeResource(_assetBuffer); } _asset = nullptr; _animator = nullptr; ResourceBuffer rbuf = _loadResource(uri); _asset = _assetLoader->createAssetFromBinary( (const uint8_t*)rbuf.data, rbuf.size); if (!_asset) { Log("Unknown error loading GLB asset."); exit(1); } int entityCount = _asset->getEntityCount(); _scene->addEntities(_asset->getEntities(), entityCount); Log("Added %d entities to scene", entityCount); _resourceLoader->loadResources(_asset); _animator = _asset->getAnimator(); const Entity* entities = _asset->getEntities(); RenderableManager& rm = _engine->getRenderableManager(); for(int i =0; i< _asset->getEntityCount(); i++) { Entity e = entities[i]; auto inst = rm.getInstance(e); rm.setCulling(inst, false); } _freeResource(rbuf); Log("Successfully loaded GLB."); } void FilamentViewer::loadGltf(const char* const uri, const char* const relativeResourcePath) { Log("Loading GLTF at URI %s", uri); if(_asset) { Log("Asset already exists"); _resourceLoader->evictResourceData(); _scene->removeEntities(_asset->getEntities(), _asset->getEntityCount()); _assetLoader->destroyAsset(_asset); _freeResource(_assetBuffer); } _asset = nullptr; _animator = nullptr; _assetBuffer = _loadResource(uri); // Parse the glTF file and create Filament entities. Log("Creating asset from JSON"); _asset = _assetLoader->createAssetFromJson((uint8_t*)_assetBuffer.data, _assetBuffer.size); Log("Created asset from JSON"); if (!_asset) { Log("Unable to parse asset"); exit(1); } Log("Loading relative resources"); loadResources(string(relativeResourcePath) + string("/")); Log("Loaded relative resources"); // _asset->releaseSourceData(); Log("Load complete for GLTF at URI %s", uri); transformToUnitCube(); } void FilamentViewer::setCamera(const char* cameraName) { FFilamentAsset* asset = (FFilamentAsset*)_asset; gltfio::NodeMap &sourceNodes = asset->isInstanced() ? asset->mInstances[0]->nodeMap : asset->mNodeMap; for (auto pair : sourceNodes) { cgltf_node const *node = pair.first; if(node->camera) { Log("Got camera %s of type %s ", node->camera->name, node->camera->type); if(strcmp(cameraName, node->camera->name) == 0) { filament::math::mat4 mat( node->matrix[0], node->matrix[1], node->matrix[2], node->matrix[3], node->matrix[4], node->matrix[5], node->matrix[6], node->matrix[7], node->matrix[8], node->matrix[9], node->matrix[10], node->matrix[11], node->parent->translation[0], node->parent->translation[1], node->parent->translation[2], 1 ); quatf rot1(node->parent->rotation[0],node->parent->rotation[1], node->parent->rotation[2], node->parent->rotation[3]); quatf rot2(node->rotation[0],node->rotation[1], node->rotation[2], node->rotation[3]); quatf rot3 = rot1 * rot2; filament::math::mat4 rotm(rot3); filament::math::mat4 result = mat * rotm; _engine->getTransformManager().setTransform( _engine->getTransformManager().getInstance(_mainCamera->getEntity()), result); } } } } StringList FilamentViewer::getTargetNames(const char* meshName) { FFilamentAsset* asset = (FFilamentAsset*)_asset; NodeMap &sourceNodes = asset->isInstanced() ? asset->mInstances[0]->nodeMap : asset->mNodeMap; if(sourceNodes.empty()) { Log("Asset source nodes empty?"); return StringList(nullptr, 0); } Log("Fetching morph target names for mesh %s", meshName); for (auto pair : sourceNodes) { cgltf_node const *node = pair.first; cgltf_mesh const *mesh = node->mesh; if(node->camera) { Log("Got camera %s of type %s", node->camera->name, node->camera->type); } if (mesh) { Log("Mesh : %s ",mesh->name); if(strcmp(meshName, mesh->name) == 0) { return StringList((const char**)mesh->target_names, (int) mesh->target_names_count); } } else { Log("No mesh attached to node"); } } return StringList(nullptr, 0); } void FilamentViewer::loadSkybox(const char* const skyboxPath, const char* const iblPath, AAssetManager* am) { ResourceBuffer skyboxBuffer = _loadResource(skyboxPath); image::KtxBundle* skyboxBundle = new image::KtxBundle(static_cast(skyboxBuffer.data), static_cast(skyboxBuffer.size)); _skyboxTexture = image::ktx::createTexture(_engine, skyboxBundle, false); _skybox = filament::Skybox::Builder().environment(_skyboxTexture).build(*_engine); // _skybox = Skybox::Builder().color({0.1, 0.125, 0.25, 1.0}).build(*_engine); _scene->setSkybox(_skybox); _freeResource(skyboxBuffer); Log("Loading IBL from %s", iblPath); // Load IBL. ResourceBuffer iblBuffer = _loadResource(iblPath); image::KtxBundle* iblBundle = new image::KtxBundle( static_cast(iblBuffer.data), static_cast(iblBuffer.size)); math::float3 harmonics[9]; iblBundle->getSphericalHarmonics(harmonics); _iblTexture = image::ktx::createTexture(_engine, iblBundle, false); _indirectLight = IndirectLight::Builder() .reflections(_iblTexture) .irradiance(3, harmonics) .intensity(30000.0f) .build(*_engine); _scene->setIndirectLight(_indirectLight); _freeResource(iblBuffer); // Always add a direct light source since it is required for shadowing. _sun = EntityManager::get().create(); LightManager::Builder(LightManager::Type::DIRECTIONAL) .color(Color::cct(6500.0f)) .intensity(100000.0f) .direction(math::float3(0.0f, 1.0f, 0.0f)) .castShadows(true) .build(*_engine, _sun); _scene->addEntity(_sun); Log("Skybox/IBL load complete."); } void FilamentViewer::transformToUnitCube() { if (!_asset) { Log("No asset, cannot transform."); return; } auto& tm = _engine->getTransformManager(); auto aabb = _asset->getBoundingBox(); auto center = aabb.center(); auto halfExtent = aabb.extent(); auto maxExtent = max(halfExtent) * 2; auto scaleFactor = 2.0f / maxExtent; auto transform = math::mat4f::scaling(scaleFactor) * math::mat4f::translation(-center); tm.setTransform(tm.getInstance(_asset->getRoot()), transform); } void FilamentViewer::cleanup() { _resourceLoader->asyncCancelLoad(); _assetLoader->destroyAsset(_asset); _materialProvider->destroyMaterials(); AssetLoader::destroy(&_assetLoader); _freeResource(_assetBuffer); }; void FilamentViewer::render() { if (!_view || !_mainCamera || !_swapChain) { Log("Not ready for rendering"); return; } math::float3 eye, target, upward; manipulator->getLookAt(&eye, &target, &upward); _mainCamera->lookAt(eye, target, upward); // Render the scene, unless the renderer wants to skip the frame. if (_renderer->beginFrame(_swapChain)) { _renderer->render(_view); _renderer->endFrame(); } } void FilamentViewer::updateViewportAndCameraProjection(int width, int height, float contentScaleFactor) { if (!_view || !_mainCamera) { Log("Skipping camera update, no view or camrea"); return; } const uint32_t _width = width * contentScaleFactor; const uint32_t _height = height * contentScaleFactor; _view->setViewport({0, 0, _width, _height}); const double aspect = (double)width / height; _mainCamera->setLensProjection(_cameraFocalLength, aspect, kNearPlane, kFarPlane); Log("Set viewport to %d %d", _width, _height); } } //void FilamentViewer::updateAnimation(AnimationBuffer animation, std::function moo) { // if(morphAnimationBuffer.frameIndex >= animation.numFrames) { // this.animation = null; // return; // } // // if(animation.frameIndex == -1) { // animation->frameIndex++; // animation->lastTime = std::chrono::high_resolution_clock::now(); // callback(); // applyWeights(morphAnimationBuffer->frameData, morphAnimationBuffer->numWeights); // } else { // duration dur = std::chrono::high_resolution_clock::now() - morphAnimationBuffer->lastTime; // float msElapsed = dur.count(); // if(msElapsed > animation->frameLength) { // animation->frameIndex++; // animation->lastTime = std::chrono::high_resolution_clock::now(); // callback(); // applyWeights(frameData + (frameIndex * numWeights), numWeights); // } // } //} // void FilamentViewer::updateMorphAnimation() { // if(morphAnimationBuffer->frameIndex >= morphAnimationBuffer->numFrames) { // morphAnimationBuffer = nullptr; // return; // } // if(morphAnimationBuffer->frameIndex == -1) { // morphAnimationBuffer->frameIndex++; // morphAnimationBuffer->startTime = std::chrono::high_resolution_clock::now(); // applyWeights(morphAnimationBuffer->frameData, morphAnimationBuffer->numWeights); // } else { // std::chrono::duration dur = std::chrono::high_resolution_clock::now() - morphAnimationBuffer->startTime; // int frameIndex = dur.count() / morphAnimationBuffer->frameLength; // if(frameIndex != morphAnimationBuffer->frameIndex) { // morphAnimationBuffer->frameIndex = frameIndex; // applyWeights(morphAnimationBuffer->frameData + (morphAnimationBuffer->frameIndex * morphAnimationBuffer->numWeights), morphAnimationBuffer->numWeights); // } // } // } // void FilamentViewer::updateEmbeddedAnimation() { // duration dur = duration_cast>(std::chrono::high_resolution_clock::now() - embeddedAnimationBuffer->lastTime); // float startTime = 0; // if(!embeddedAnimationBuffer->hasStarted) { // embeddedAnimationBuffer->hasStarted = true; // embeddedAnimationBuffer->lastTime = std::chrono::high_resolution_clock::now(); // } else if(dur.count() >= embeddedAnimationBuffer->duration) { // embeddedAnimationBuffer = nullptr; // return; // } else { // startTime = dur.count(); // } // _animator->applyAnimation(embeddedAnimationBuffer->animationIndex, startTime); // _animator->updateBoneMatrices(); // } // // // //if(morphAnimationBuffer.frameIndex >= morphAnimationBuffer.numFrames) { // // this.morphAnimationBuffer = null; // // return; // //} // // // //if(morphAnimationBuffer.frameIndex == -1) { // // applyWeights(morphAnimationBuffer->frameData, morphAnimationBuffer->numWeights); // // morphAnimationBuffer->frameIndex++; // // morphAnimationBuffer->lastTime = std::chrono::high_resolution_clock::now(); // //} else { // // duration dur = std::chrono::high_resolution_clock::now() - morphAnimationBuffer->lastTime; // // float msElapsed = dur.count(); // // if(msElapsed > morphAnimationBuffer->frameLength) { // // frameIndex++; // // applyWeights(frameData + (frameIndex * numWeights), numWeights); // // morphAnimationBuffer->lastTime = std::chrono::high_resolution_clock::now(); // // } // //} // void FilamentViewer::playAnimation(int index) { // embeddedAnimationBuffer = make_unique(index, _animator->getAnimationDuration(index)); // } // void FilamentViewer::animateWeights(float* data, int numWeights, int length, float frameRate) { // morphAnimationBuffer = std::make_unique(data, numWeights, length / numWeights, 1000 / frameRate ); // } // if(shaderPath) { // opaqueShaderResources = _loadResource(opaqueShaderPath); // fadeShaderResources = _loadResource(fadeShaderPath); // _materialProvider = createGPUMorphShaderLoader( // opaqueShaderResources.data, // opaqueShaderResources.size, // fadeShaderResources.data, // fadeShaderResources.size, // _engine); // } else { // } // void printWeights(float* weights, int numWeights) { // for(int i =0; i < numWeights; i++) { // // std::cout << weights[i]; // } // } // void FilamentViewer::createMorpher(const char* meshName, int* primitives, int numPrimitives) { // // morphHelper = new gltfio::GPUMorphHelper((FFilamentAsset*)_asset, meshName, primitives, numPrimitives); // // morphHelper = new gltfio::CPUMorpher(((FFilamentAsset)*_asset, (FFilamentInstance*)_asset)); // } // void FilamentViewer::animateBones() { // } // Entity entity = _asset->getFirstEntityByName("CC_Base_JawRoot"); // if(!entity) { // return; // } // TransformManager& transformManager = _engine->getTransformManager(); // TransformManager::Instance node = transformManager.getInstance( entity); // mat4f xform = transformManager.getTransform(node); // float3 scale; // quatf rotation; // float3 translation; // decomposeMatrix(xform, &translation, &rotation, &scale); // // const quatf srcQuat { weights[0] * 0.9238,0,weights[0] * 0.3826, 0 }; // // float3 { scale[0] * (1.0f - weights[0]), scale[1] * (1.0f - weights[1]), scale[2] * (1.0f - weights[2]) } // // xform = composeMatrix(translation + float3 { weights[0], weights[1], weights[2] }, rotation, scale ); // transformManager.setTransform(node, xform); // }