#include #include #include #include #include #include #include #include #include #include #include #include #include #include "Log.hpp" #include #include #include #include "scene/CustomGeometry.hpp" #include "UnprojectTexture.hpp" namespace thermion { bool UnprojectTexture::isInsideTriangle(const math::float2 &p, const math::float2 &a, const math::float2 &b, const math::float2 &c) { float d1 = (p.x - b.x) * (a.y - b.y) - (a.x - b.x) * (p.y - b.y); float d2 = (p.x - c.x) * (b.y - c.y) - (b.x - c.x) * (p.y - c.y); float d3 = (p.x - a.x) * (c.y - a.y) - (c.x - a.x) * (p.y - a.y); return (d1 >= 0 && d2 >= 0 && d3 >= 0) || (d1 <= 0 && d2 <= 0 && d3 <= 0); } math::float3 UnprojectTexture::barycentric(const math::float2 &p, const math::float2 &a, const math::float2 &b, const math::float2 &c) { math::float2 v0 = b - a; math::float2 v1 = c - a; math::float2 v2 = p - a; float d00 = dot(v0, v0); float d01 = dot(v0, v1); float d11 = dot(v1, v1); float d20 = dot(v2, v0); float d21 = dot(v2, v1); float denom = d00 * d11 - d01 * d01; float v = (d11 * d20 - d01 * d21) / denom; float w = (d00 * d21 - d01 * d20) / denom; float u = 1.0f - v - w; return math::float3(u, v, w); } void UnprojectTexture::unproject(utils::Entity entity, const uint8_t *inputTexture, uint8_t *outputTexture, uint32_t inputWidth, uint32_t inputHeight, uint32_t outputWidth, uint32_t outputHeight) { // auto &rm = _engine->getRenderableManager(); // auto &tm = _engine->getTransformManager(); // math::mat4 invViewProj = Camera::inverseProjection(_camera.getProjectionMatrix()) * _camera.getModelMatrix(); // auto ti = tm.getInstance(entity); // math::mat4f worldTransform = tm.getWorldTransform(ti); // auto inverseWorldTransform = inverse(worldTransform); // const float *vertices = _geometry->vertices; // const float *uvs = _geometry->uvs; // const uint16_t *indices = _geometry->indices; // uint32_t numIndices = _geometry->numIndices; // // Create a depth buffer // std::vector depthBuffer(inputWidth * inputHeight, std::numeric_limits::infinity()); // // Create a buffer to store the triangle index for each pixel // std::vector triangleIndexBuffer(inputWidth * inputHeight, -1); // auto max = 0.0f; // auto min = 99.0f; // // Depth pre-pass // for (size_t i = 0; i < numIndices; i += 3) // { // math::float3 v0(vertices[indices[i] * 3], vertices[indices[i] * 3 + 1], vertices[indices[i] * 3 + 2]); // math::float3 v1(vertices[indices[i + 1] * 3], vertices[indices[i + 1] * 3 + 1], vertices[indices[i + 1] * 3 + 2]); // math::float3 v2(vertices[indices[i + 2] * 3], vertices[indices[i + 2] * 3 + 1], vertices[indices[i + 2] * 3 + 2]); // math::float2 uv0(uvs[(indices[i] * 2)], uvs[(indices[i] * 2) + 1]); // math::float2 uv1(uvs[(indices[i + 1] * 2)], uvs[(indices[i + 1] * 2) + 1]); // math::float2 uv2(uvs[(indices[i + 2] * 2)], uvs[(indices[i + 2] * 2) + 1]); // // Transform vertices to world space // v0 = (worldTransform * math::float4(v0, 1.0f)).xyz; // v1 = (worldTransform * math::float4(v1, 1.0f)).xyz; // v2 = (worldTransform * math::float4(v2, 1.0f)).xyz; // // Project vertices to screen space // math::float4 clipPos0 = _camera.getProjectionMatrix() * _camera.getViewMatrix() * math::float4(v0, 1.0f); // math::float4 clipPos1 = _camera.getProjectionMatrix() * _camera.getViewMatrix() * math::float4(v1, 1.0f); // math::float4 clipPos2 = _camera.getProjectionMatrix() * _camera.getViewMatrix() * math::float4(v2, 1.0f); // math::float3 ndcPos0 = clipPos0.xyz / clipPos0.w; // math::float3 ndcPos1 = clipPos1.xyz / clipPos1.w; // math::float3 ndcPos2 = clipPos2.xyz / clipPos2.w; // // Convert NDC to screen coordinates // math::float2 screenPos0((ndcPos0.x * 0.5f + 0.5f) * inputWidth, (1.0f - (ndcPos0.y * 0.5f + 0.5f)) * inputHeight); // math::float2 screenPos1((ndcPos1.x * 0.5f + 0.5f) * inputWidth, (1.0f - (ndcPos1.y * 0.5f + 0.5f)) * inputHeight); // math::float2 screenPos2((ndcPos2.x * 0.5f + 0.5f) * inputWidth, (1.0f - (ndcPos2.y * 0.5f + 0.5f)) * inputHeight); // // Compute bounding box of the triangle // int minX = std::max(0, static_cast(std::min({screenPos0.x, screenPos1.x, screenPos2.x}))); // int maxX = std::min(static_cast(inputWidth) - 1, static_cast(std::max({screenPos0.x, screenPos1.x, screenPos2.x}))); // int minY = std::max(0, static_cast(std::min({screenPos0.y, screenPos1.y, screenPos2.y}))); // int maxY = std::min(static_cast(inputHeight) - 1, static_cast(std::max({screenPos0.y, screenPos1.y, screenPos2.y}))); // // Iterate over the bounding box // for (int y = minY; y <= maxY; ++y) // { // for (int x = minX; x <= maxX; ++x) // { // math::float2 pixelPos(x + 0.5f, y + 0.5f); // if (isInsideTriangle(pixelPos, screenPos0, screenPos1, screenPos2)) // { // math::float3 bary = barycentric(pixelPos, screenPos0, screenPos1, screenPos2); // // Interpolate depth // float depth = bary.x * ndcPos0.z + bary.y * ndcPos1.z + bary.z * ndcPos2.z; // // Depth test // if (depth < depthBuffer[y * inputWidth + x]) // { // if (depth > max) // { // max = depth; // } // if (depth < min) // { // min = depth; // } // depthBuffer[y * inputWidth + x] = depth; // triangleIndexBuffer[y * inputWidth + x] = i / 3; // Store triangle index // } // } // } // } // } // for (uint32_t y = 0; y < outputHeight; ++y) // { // for (uint32_t x = 0; x < outputWidth; ++x) // { // math::float2 uv(static_cast(x) / outputWidth, static_cast(y) / outputHeight); // // Use the UV coordinates to get the corresponding 3D position on the renderable // math::float3 objectPos; // math::float2 interpolatedUV; // bool found = false; // // Iterate over triangles to find which one contains this UV coordinate // for (size_t i = 0; i < numIndices; i += 3) // { // math::float2 uv0 = *(math::float2 *)&uvs[indices[i] * 2]; // math::float2 uv1 = *(math::float2 *)&uvs[indices[i + 1] * 2]; // math::float2 uv2 = *(math::float2 *)&uvs[indices[i + 2] * 2]; // if (isInsideTriangle(uv, uv0, uv1, uv2)) // { // // Compute barycentric coordinates in UV space // math::float3 bary = barycentric(uv, uv0, uv1, uv2); // // Interpolate 3D position // math::float3 v0(vertices[indices[i] * 3], vertices[indices[i] * 3 + 1], vertices[indices[i] * 3 + 2]); // math::float3 v1(vertices[indices[i + 1] * 3], vertices[indices[i + 1] * 3 + 1], vertices[indices[i + 1] * 3 + 2]); // math::float3 v2(vertices[indices[i + 2] * 3], vertices[indices[i + 2] * 3 + 1], vertices[indices[i + 2] * 3 + 2]); // objectPos = v0 * bary.x + v1 * bary.y + v2 * bary.z; // interpolatedUV = uv; // // Find the screen coordinates on the input texture // math::float3 worldPos = (worldTransform * math::float4(objectPos, 1.0f)).xyz; // // Project the world position to screen space // math::float4 clipPos = _camera.getProjectionMatrix() * _camera.getViewMatrix() * math::float4(worldPos, 1.0f); // math::float3 ndcPos = clipPos.xyz / clipPos.w; // // Convert NDC to screen coordinates // uint32_t screenX = (ndcPos.x * 0.5f + 0.5f) * inputWidth; // uint32_t screenY = (1.0f - (ndcPos.y * 0.5f + 0.5f)) * inputHeight; // if (triangleIndexBuffer[(screenY * inputWidth) + screenX] == i / 3) // { // if (screenX >= 0 && screenX < inputWidth && screenY >= 0 && screenY < inputHeight) // { // int inputIndex = (screenY * inputWidth + screenX) * 4; // int outputIndex = (y * outputWidth + x) * 4; // std::copy_n(&inputTexture[inputIndex], 4, &outputTexture[outputIndex]); // } // } // } // } // } // } } } // namespace thermion