107 lines
3.3 KiB
Plaintext
107 lines
3.3 KiB
Plaintext
material {
|
|
name : TextureProjection,
|
|
parameters : [
|
|
{
|
|
type : sampler2d,
|
|
name : color,
|
|
precision: high
|
|
},
|
|
{
|
|
type : sampler2d,
|
|
format : float,
|
|
name : depth,
|
|
},
|
|
{
|
|
type : bool,
|
|
name : flipUVs
|
|
},
|
|
{
|
|
type : bool,
|
|
name : useDepth
|
|
}
|
|
],
|
|
variables : [
|
|
{
|
|
name : screenPos,
|
|
precision : high
|
|
}
|
|
],
|
|
requires : [ position, uv0 ],
|
|
shadingModel : unlit,
|
|
doubleSided : false,
|
|
blending: opaque,
|
|
depthWrite : true,
|
|
depthCulling : true,
|
|
culling: none,
|
|
vertexDomain: device
|
|
}
|
|
|
|
//
|
|
// This material projects a rendered color buffer texture onto a mesh.
|
|
//
|
|
// This allows you to texture the mesh by retrieving the output of this shader pass.
|
|
//
|
|
// We do this by:
|
|
// 1) calculating the screenspace position of each vertex (VS)
|
|
// 2) transforming each vertex to its UV coordinate (VS)
|
|
// 3) at each UV coordinate, sampling from the input buffer at the screenspace position (FS).
|
|
//
|
|
// In a vertex shader, Filament sets gl_Position after materialVertex(..) is called, meaning we cannot change the vertex positions ourselves.
|
|
// To achieve the same effect, we set the vertexDomain to device and set clipSpaceTransform.
|
|
//
|
|
vertex {
|
|
void materialVertex(inout MaterialVertexInputs material) {
|
|
|
|
mat4 transform = getWorldFromModelMatrix();
|
|
vec3 position = getPosition().xyz;
|
|
vec4 worldPosition = mulMat4x4Float3(transform, position);
|
|
vec4 clipSpace = getClipFromWorldMatrix() * worldPosition;
|
|
|
|
material.screenPos = clipSpace;
|
|
|
|
highp float2 uv = material.uv0;
|
|
|
|
// Transform UVs (0 to 1) to clip space (-1 to 1 range)
|
|
// UV (0,0) maps to (-1,-1) and UV (1,1) maps to (1,1)
|
|
vec2 clipPosition = uv * 2.0 - 1.0;
|
|
|
|
material.clipSpaceTransform = mat4(
|
|
vec4(0.0, 0.0, 0.0, 0.0),
|
|
vec4(0.0, 0.0, 0.0, 0.0),
|
|
vec4(0.0, 0.0, 0.0, 0.0),
|
|
vec4(clipPosition.x, clipPosition.y, 0.0, 1.0)
|
|
);
|
|
}
|
|
}
|
|
|
|
fragment {
|
|
void material(inout MaterialInputs material) {
|
|
|
|
prepareMaterial(material);
|
|
|
|
// calculate position in clip space
|
|
vec3 clipSpace = variable_screenPos.xyz / variable_screenPos.w;
|
|
// convert to [0,1]
|
|
vec3 deviceCoords = clipSpace * 0.5 + 0.5;
|
|
|
|
// flip depth coords to [1,0]
|
|
float vertexDepth = clipSpace.z;
|
|
|
|
vec2 uv = deviceCoords.xy;
|
|
if(materialParams.flipUVs) {
|
|
uv = uvToRenderTargetUV(uv);
|
|
}
|
|
|
|
vec4 sampledDepth = textureLod(materialParams_depth, uv, 0.0);
|
|
//material.baseColor = vec4(sampledDepth.r, 0.0, 0.0, 1.0);
|
|
//material.baseColor = vec4(vertexDepth, 0.0, 0.0, 1.0);
|
|
|
|
if(materialParams.useDepth && (sampledDepth.r < 0.0001 || abs(vertexDepth - sampledDepth.r) > 0.001)) {
|
|
material.baseColor = vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else {
|
|
vec2 texSize = vec2(textureSize(materialParams_color, 0));
|
|
vec4 color = textureLod(materialParams_color, uvToRenderTargetUV(deviceCoords.xy), 0.0f);
|
|
material.baseColor = color;
|
|
}
|
|
}
|
|
} |