Files
cup_edit/ios/include/components/AnimationComponentManager.hpp
2024-04-29 14:27:44 +08:00

281 lines
11 KiB
C++

#pragma once
#include "Log.hpp"
#include <chrono>
#include <variant>
#include <filament/Engine.h>
#include <filament/RenderableManager.h>
#include <filament/Renderer.h>
#include <filament/Scene.h>
#include <filament/Texture.h>
#include <filament/TransformManager.h>
#include <math/vec3.h>
#include <math/vec4.h>
#include <math/mat3.h>
#include <math/norm.h>
#include <gltfio/Animator.h>
#include <gltfio/AssetLoader.h>
#include <gltfio/ResourceLoader.h>
#include <utils/NameComponentManager.h>
template class std::vector<float>;
namespace flutter_filament
{
using namespace filament;
using namespace filament::gltfio;
using namespace utils;
using namespace std::chrono;
typedef std::chrono::time_point<std::chrono::high_resolution_clock> time_point_t;
enum AnimationType
{
MORPH,
BONE,
GLTF
};
struct AnimationStatus
{
time_point_t start = time_point_t::max();
bool loop = false;
bool reverse = false;
float durationInSecs = 0;
};
struct GltfAnimation : AnimationStatus
{
int index = -1;
};
//
// Use this to construct a dynamic (i.e. non-glTF embedded) morph target animation.
//
struct MorphAnimation : AnimationStatus
{
utils::Entity meshTarget;
int numFrames = -1;
float frameLengthInMs = 0;
std::vector<float> frameData;
std::vector<int> morphIndices;
int lengthInFrames;
};
//
// Use this to construct a dynamic (i.e. non-glTF embedded) bone/joint animation.
//
struct BoneAnimation : AnimationStatus
{
size_t boneIndex;
std::vector<utils::Entity> meshTargets;
size_t skinIndex = 0;
int lengthInFrames;
float frameLengthInMs = 0;
std::vector<math::mat4f> frameData;
};
struct AnimationComponent
{
std::variant<FilamentInstance *, Entity> target;
std::vector<math::mat4f> initialJointTransforms;
std::vector<GltfAnimation> gltfAnimations;
std::vector<MorphAnimation> morphAnimations;
std::vector<BoneAnimation> boneAnimations;
// the index of the last active glTF animation,
// used to cross-fade
int fadeGltfAnimationIndex = -1;
float fadeDuration = 0.0f;
float fadeOutAnimationStart = 0.0f;
};
class AnimationComponentManager : public utils::SingleInstanceComponentManager<AnimationComponent>
{
filament::TransformManager &_transformManager;
filament::RenderableManager &_renderableManager;
public:
AnimationComponentManager(
filament::TransformManager &transformManager,
filament::RenderableManager &renderableManager) : _transformManager(transformManager),
_renderableManager(renderableManager){};
void addAnimationComponent(std::variant<FilamentInstance *, Entity> target)
{
AnimationComponent animationComponent;
animationComponent.target = target;
EntityInstanceBase::Type componentInstance;
if (std::holds_alternative<FilamentInstance *>(target))
{
auto instance = std::get<FilamentInstance *>(target);
const auto joints = instance->getJointsAt(0);
for (int i = 0; i < instance->getJointCountAt(0); i++)
{
const auto joint = joints[i];
const auto &jointTransformInstance = _transformManager.getInstance(joint);
const auto &jointTransform = _transformManager.getTransform(jointTransformInstance);
animationComponent.initialJointTransforms.push_back(jointTransform);
}
componentInstance = addComponent(instance->getRoot());
}
else
{
componentInstance = addComponent(std::get<Entity>(target));
}
this->elementAt<0>(componentInstance) = animationComponent;
}
void update()
{
auto now = high_resolution_clock::now();
for (auto it = begin(); it < end(); it++)
{
const auto &entity = getEntity(it);
auto componentInstance = getInstance(entity);
auto &animationComponent = elementAt<0>(componentInstance);
auto &morphAnimations = animationComponent.morphAnimations;
if (std::holds_alternative<FilamentInstance *>(animationComponent.target))
{
auto target = std::get<FilamentInstance *>(animationComponent.target);
auto animator = target->getAnimator();
auto &gltfAnimations = animationComponent.gltfAnimations;
auto &boneAnimations = animationComponent.boneAnimations;
for (int i = ((int)gltfAnimations.size()) - 1; i >= 0; i--)
{
auto animationStatus = animationComponent.gltfAnimations[i];
auto elapsedInSecs = float(std::chrono::duration_cast<std::chrono::milliseconds>(now - animationStatus.start).count()) / 1000.0f;
if (!animationStatus.loop && elapsedInSecs >= animationStatus.durationInSecs)
{
animator->applyAnimation(animationStatus.index, animationStatus.durationInSecs - 0.001);
animator->updateBoneMatrices();
gltfAnimations.erase(gltfAnimations.begin() + i);
animationComponent.fadeGltfAnimationIndex = -1;
continue;
}
animator->applyAnimation(animationStatus.index, elapsedInSecs);
if (animationComponent.fadeGltfAnimationIndex != -1 && elapsedInSecs < animationComponent.fadeDuration)
{
// cross-fade
auto fadeFromTime = animationComponent.fadeOutAnimationStart + elapsedInSecs;
auto alpha = elapsedInSecs / animationComponent.fadeDuration;
animator->applyCrossFade(animationComponent.fadeGltfAnimationIndex, fadeFromTime, alpha);
}
}
animator->updateBoneMatrices();
for (int i = (int)boneAnimations.size() - 1; i >= 0; i--)
{
auto animationStatus = boneAnimations[i];
auto elapsedInSecs = float(std::chrono::duration_cast<std::chrono::milliseconds>(now - animationStatus.start).count()) / 1000.0f;
if (!animationStatus.loop && elapsedInSecs >= animationStatus.durationInSecs)
{
boneAnimations.erase(boneAnimations.begin() + i);
continue;
}
float elapsedFrames = elapsedInSecs * 1000.0f / animationStatus.frameLengthInMs;
int currFrame = static_cast<int>(elapsedFrames) % animationStatus.lengthInFrames;
float delta = elapsedFrames - currFrame;
int nextFrame = currFrame;
auto restLocalTransform = animationComponent.initialJointTransforms[animationStatus.boneIndex];
// offset from the end if reverse
if (animationStatus.reverse)
{
currFrame = animationStatus.lengthInFrames - currFrame;
if (currFrame > 0)
{
nextFrame = currFrame - 1;
}
else
{
nextFrame = 0;
}
}
else
{
if (currFrame < animationStatus.lengthInFrames - 1)
{
nextFrame = currFrame + 1;
}
else
{
nextFrame = currFrame;
}
}
// simple linear interpolation
math::mat4f curr = (1 - delta) * (restLocalTransform * animationStatus.frameData[currFrame]);
math::mat4f next = delta * (restLocalTransform * animationStatus.frameData[nextFrame]);
math::mat4f localTransform = curr + next;
const Entity joint = target->getJointsAt(animationStatus.skinIndex)[animationStatus.boneIndex];
auto jointTransform = _transformManager.getInstance(joint);
_transformManager.setTransform(jointTransform, localTransform);
animator->updateBoneMatrices();
if (animationStatus.loop && elapsedInSecs >= animationStatus.durationInSecs)
{
animationStatus.start = now;
}
}
}
for (int i = (int)morphAnimations.size() - 1; i >= 0; i--)
{
auto animationStatus = morphAnimations[i];
auto elapsedInSecs = float(std::chrono::duration_cast<std::chrono::milliseconds>(now - animationStatus.start).count()) / 1000.0f;
if (!animationStatus.loop && elapsedInSecs >= animationStatus.durationInSecs)
{
morphAnimations.erase(morphAnimations.begin() + i);
continue;
}
int frameNumber = static_cast<int>(elapsedInSecs * 1000.0f / animationStatus.frameLengthInMs) % animationStatus.lengthInFrames;
// offset from the end if reverse
if (animationStatus.reverse)
{
frameNumber = animationStatus.lengthInFrames - frameNumber;
}
auto baseOffset = frameNumber * animationStatus.morphIndices.size();
for (int i = 0; i < animationStatus.morphIndices.size(); i++)
{
auto morphIndex = animationStatus.morphIndices[i];
// set the weights appropriately
_renderableManager.setMorphWeights(
_renderableManager.getInstance(animationStatus.meshTarget),
animationStatus.frameData.data() + baseOffset + i,
1,
morphIndex);
}
}
}
}
};
}