Files
cup_edit/thermion_dart/test/helpers.dart
Nick Fisher 255c0edd49 refactoring
2025-03-21 14:56:20 +08:00

527 lines
17 KiB
Dart

// ignore_for_file: unused_local_variable
import 'dart:ffi';
import 'dart:io';
import 'package:image/image.dart' as img;
import 'dart:typed_data';
import 'package:ffi/ffi.dart';
import 'package:image/image.dart';
import 'package:thermion_dart/src/filament/src/layers.dart';
import 'package:thermion_dart/src/swift/swift_bindings.g.dart';
import 'package:thermion_dart/src/utils/src/dart_resources.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/callbacks.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_filament_app.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_render_target.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_swapchain.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/thermion_dart.g.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/thermion_viewer_ffi.dart';
import 'package:thermion_dart/src/viewer/src/ffi/thermion_viewer_ffi.dart';
import 'package:thermion_dart/thermion_dart.dart';
import 'package:vector_math/vector_math_64.dart';
import 'package:path/path.dart' as p;
Color kWhite = ColorFloat32(4)..setRgba(1.0, 1.0, 1.0, 1.0);
Color kRed = ColorFloat32(4)..setRgba(1.0, 0.0, 0.0, 1.0);
Color kGreen = ColorFloat32(4)..setRgba(0.0, 1.0, 0.0, 1.0);
Color kBlue = ColorFloat32(4)..setRgba(0.0, 0.0, 1.0, 1.0);
/// Test files are run in a variety of ways, find this package root in all.
///
/// Test files can be run from source from any working directory. The Dart SDK
/// `tools/test.py` runs them from the root of the SDK for example.
///
/// Test files can be run from dill from the root of package. `package:test`
/// does this.
Uri findPackageRoot(String packageName) {
final script = Platform.script;
final fileName = script.name;
if (fileName.contains('_test')) {
// We're likely running from source.
var directory = script.resolve('.');
while (true) {
final dirName = directory.name;
if (dirName == packageName) {
return directory;
}
final parent = directory.resolve('..');
if (parent == directory) break;
directory = parent;
}
} else if (fileName.endsWith('.dill')) {
final cwd = Directory.current.uri;
final dirName = cwd.name;
if (dirName == packageName) {
return cwd;
}
}
throw StateError("Could not find package root for package '$packageName'. "
'Tried finding the package root via Platform.script '
"'${Platform.script.toFilePath()}' and Directory.current "
"'${Directory.current.uri.toFilePath()}'.");
}
extension on Uri {
String get name => pathSegments.where((e) => e != '').last;
}
Future<Uint8List> savePixelBufferToBmp(
Uint8List pixelBuffer, int width, int height, String outputPath) async {
var data = await pixelBufferToBmp(pixelBuffer, width, height);
File(outputPath).writeAsBytesSync(data);
print("Wrote bitmap to ${outputPath}");
return data;
}
Future<Uint8List> savePixelBufferToPng(
Uint8List pixelBuffer, int width, int height, String outputPath) async {
var data = await pixelBufferToPng(pixelBuffer, width, height);
File(outputPath).writeAsBytesSync(data);
print("Wrote bitmap to ${outputPath}");
return data;
}
class TestHelper {
late FFISwapChain swapChain;
late Directory outDir;
late String testDir;
TestHelper(String dir) {
final packageUri = findPackageRoot('thermion_dart').toFilePath();
testDir = Directory("${packageUri}test").path;
outDir = Directory("$testDir/output/${dir}");
outDir.createSync(recursive: true);
if (Platform.isMacOS) {
DynamicLibrary.open('${testDir}/libThermionTextureSwift.dylib');
}
}
///
///
///
Future<Uint8List> capture(View view, String? outputFilename) async {
final rt = await view.getRenderTarget();
var pixelBuffer = await FilamentApp.instance!
.capture(view, captureRenderTarget: rt != null);
var vp = await view.getViewport();
if (outputFilename != null) {
var outPath = p.join(outDir.path, "$outputFilename.png");
await savePixelBufferToPng(pixelBuffer, vp.width, vp.height, outPath);
}
return pixelBuffer;
}
///
///
///
Future<List<Uint8List>> captureMultiple(
ThermionViewer viewer,
String? outputFilename, {
View? view,
SwapChain? swapChain,
RenderTarget? renderTarget,
}) async {
throw UnimplementedError();
// view ??= await viewer.view;
// final targets = [
// (view: view!, swapChain: swapChain, renderTarget: renderTarget)
// ];
// var pixelBuffers = await viewer.capture(targets);
// for (final entry in targets) {
// var vp = await entry.view.getViewport();
// if (outputFilename != null) {
// var outPath = p.join(outDir.path, "$outputFilename.png");
// await savePixelBufferToPng(
// pixelBuffers[targets.indexOf(entry)], vp.width, vp.height, outPath);
// }
// }
// return pixelBuffers;
}
///
///
///
Future<ThermionTextureSwift> createTexture(int width, int height,
{bool depth = false}) async {
final object = ThermionTextureSwift.new1();
object.initWithWidth_height_isDepth_(width, height, depth);
return object;
}
Future setup() async {
final resourceLoader = calloc<ResourceLoaderWrapper>(1);
var loadToOut = NativeCallable<
Void Function(Pointer<Char>,
Pointer<ResourceBuffer>)>.listener(DartResourceLoader.loadResource);
resourceLoader.ref.loadToOut = loadToOut.nativeFunction;
var freeResource = NativeCallable<Void Function(ResourceBuffer)>.listener(
DartResourceLoader.freeResource);
resourceLoader.ref.freeResource = freeResource.nativeFunction;
await FFIFilamentApp.create();
await FilamentApp.instance!.setClearColor(0, 1, 0, 1);
}
///
///
///
Future withViewer(
Future Function(ThermionViewer viewer) fn, {
img.Color? bg,
Vector3? cameraPosition,
({int width, int height}) viewportDimensions = (width: 512, height: 512),
bool postProcessing = false,
bool addSkybox = false,
bool createRenderTarget = false,
}) async {
cameraPosition ??= Vector3(0, 2, 6);
var swapChain = await FilamentApp.instance!
.createHeadlessSwapChain(viewportDimensions.width, viewportDimensions.height) as FFISwapChain;
FFIRenderTarget? renderTarget;
if (createRenderTarget) {
var metalColorTexture = await createTexture(
viewportDimensions.width, viewportDimensions.height);
var metalDepthTexture = await createTexture(
viewportDimensions.width, viewportDimensions.height,
depth: true);
var color = await FilamentApp.instance!
.createTexture(viewportDimensions.width, viewportDimensions.height,
flags: {
TextureUsage.TEXTURE_USAGE_BLIT_SRC,
TextureUsage.TEXTURE_USAGE_COLOR_ATTACHMENT,
TextureUsage.TEXTURE_USAGE_SAMPLEABLE
},
textureFormat: TextureFormat.RGB32F,
importedTextureHandle: metalColorTexture.metalTextureAddress);
var width = await color.getWidth();
var height = await color.getHeight();
var depth = await FilamentApp.instance!
.createTexture(viewportDimensions.width, viewportDimensions.height,
flags: {
TextureUsage.TEXTURE_USAGE_BLIT_SRC,
TextureUsage.TEXTURE_USAGE_DEPTH_ATTACHMENT,
TextureUsage.TEXTURE_USAGE_SAMPLEABLE,
},
textureFormat: TextureFormat.DEPTH32F,
importedTextureHandle: metalDepthTexture.metalTextureAddress);
renderTarget = await FilamentApp.instance!.createRenderTarget(
viewportDimensions.width, viewportDimensions.height,
color: color, depth: depth) as FFIRenderTarget;
}
var viewer = ThermionViewerFFI(
loadAssetFromUri: (path) async =>
File(path.replaceAll("file://", "")).readAsBytesSync());
await viewer.initialized;
await FilamentApp.instance!.register(swapChain, viewer.view);
if (renderTarget != null) {
await viewer.view.setRenderTarget(renderTarget);
}
await viewer.view
.setViewport(
viewportDimensions.width,
viewportDimensions.height
);
if (addSkybox) {
await viewer
.loadSkybox("file://${testDir}/assets/default_env_skybox.ktx");
}
if (bg != null) {
await viewer.setBackgroundColor(
bg.r.toDouble(), bg.g.toDouble(), bg.b.toDouble(), bg.a.toDouble());
}
final camera = await viewer.getActiveCamera();
await camera.setLensProjection(
near: kNear, far: kFar, aspect: 1.0, focalLength: kFocalLength);
await camera.lookAt(cameraPosition);
await viewer.setPostProcessing(postProcessing);
await viewer.setToneMapping(ToneMapper.LINEAR);
await fn.call(viewer);
await viewer.dispose();
}
}
Uint8List poissonBlend(List<Uint8List> textures, int width, int height) {
final int numTextures = textures.length;
final int size = width * height;
// Initialize the result
List<Vector4> result = List.generate(size, (_) => Vector4(0, 0, 0, 0));
List<bool> validPixel = List.generate(size, (_) => false);
// Compute gradients and perform simplified Poisson blending
for (int y = 1; y < height - 1; y++) {
for (int x = 1; x < width - 1; x++) {
int index = y * width + x;
Vector4 gradX = Vector4(0, 0, 0, 0);
Vector4 gradY = Vector4(0, 0, 0, 0);
bool hasValidData = false;
for (int t = 0; t < numTextures; t++) {
int i = index * 4;
if (textures[t][i] == 0 &&
textures[t][i + 1] == 0 &&
textures[t][i + 2] == 0 &&
textures[t][i + 3] == 0) {
continue; // Skip this texture if the pixel is empty
}
hasValidData = true;
int iLeft = (y * width + x - 1) * 4;
int iRight = (y * width + x + 1) * 4;
int iUp = ((y - 1) * width + x) * 4;
int iDown = ((y + 1) * width + x) * 4;
Vector4 gx = Vector4(
(textures[t][iRight] - textures[t][iLeft]) / 2,
(textures[t][iRight + 1] - textures[t][iLeft + 1]) / 2,
(textures[t][iRight + 2] - textures[t][iLeft + 2]) / 2,
(textures[t][iRight + 3] - textures[t][iLeft + 3]) / 2);
Vector4 gy = Vector4(
(textures[t][iDown] - textures[t][iUp]) / 2,
(textures[t][iDown + 1] - textures[t][iUp + 1]) / 2,
(textures[t][iDown + 2] - textures[t][iUp + 2]) / 2,
(textures[t][iDown + 3] - textures[t][iUp + 3]) / 2);
// Select the gradient with larger magnitude
double magX = gx.r * gx.r + gx.g * gx.g + gx.b * gx.b + gx.a * gx.a;
double magY = gy.r * gy.r + gy.g * gy.g + gy.b * gy.b + gy.a * gy.a;
if (magX >
gradX.r * gradX.r +
gradX.g * gradX.g +
gradX.b * gradX.b +
gradX.a * gradX.a) {
gradX = gx;
}
if (magY >
gradY.r * gradY.r +
gradY.g * gradY.g +
gradY.b * gradY.b +
gradY.a * gradY.a) {
gradY = gy;
}
}
if (hasValidData) {
validPixel[index] = true;
// Simplified Poisson equation solver (Jacobi iteration)
result[index].r = (result[index - 1].r +
result[index + 1].r +
result[index - width].r +
result[index + width].r +
gradX.r -
gradY.r) /
4;
result[index].g = (result[index - 1].g +
result[index + 1].g +
result[index - width].g +
result[index + width].g +
gradX.g -
gradY.g) /
4;
result[index].b = (result[index - 1].b +
result[index + 1].b +
result[index - width].b +
result[index + width].b +
gradX.b -
gradY.b) /
4;
result[index].a = (result[index - 1].a +
result[index + 1].a +
result[index - width].a +
result[index + width].a +
gradX.a -
gradY.a) /
4;
}
}
}
// Fill in gaps and normalize
Uint8List finalResult = Uint8List(size * 4);
for (int i = 0; i < size; i++) {
if (validPixel[i]) {
finalResult[i * 4] = (result[i].r.clamp(0, 255)).toInt();
finalResult[i * 4 + 1] = (result[i].g.clamp(0, 255)).toInt();
finalResult[i * 4 + 2] = (result[i].b.clamp(0, 255)).toInt();
finalResult[i * 4 + 3] = (result[i].a.clamp(0, 255)).toInt();
} else {
// For invalid pixels, try to interpolate from neighbors
List<int> validNeighbors = [];
if (i > width && validPixel[i - width]) validNeighbors.add(i - width);
if (i < size - width && validPixel[i + width])
validNeighbors.add(i + width);
if (i % width > 0 && validPixel[i - 1]) validNeighbors.add(i - 1);
if (i % width < width - 1 && validPixel[i + 1]) validNeighbors.add(i + 1);
if (validNeighbors.isNotEmpty) {
double r = 0, g = 0, b = 0, a = 0;
for (int neighbor in validNeighbors) {
r += result[neighbor].r;
g += result[neighbor].g;
b += result[neighbor].b;
a += result[neighbor].a;
}
finalResult[i * 4] = (r / validNeighbors.length).clamp(0, 255).toInt();
finalResult[i * 4 + 1] =
(g / validNeighbors.length).clamp(0, 255).toInt();
finalResult[i * 4 + 2] =
(b / validNeighbors.length).clamp(0, 255).toInt();
finalResult[i * 4 + 3] =
(a / validNeighbors.length).clamp(0, 255).toInt();
} else {
// If no valid neighbors, set to transparent black
finalResult[i * 4] = 0;
finalResult[i * 4 + 1] = 0;
finalResult[i * 4 + 2] = 0;
finalResult[i * 4 + 3] = 0;
}
}
}
return finalResult;
}
Uint8List medianImages(List<Uint8List> images) {
if (images.isEmpty) {
return Uint8List(0);
}
int imageSize = images[0].length;
Uint8List result = Uint8List(imageSize);
int numImages = images.length;
for (int i = 0; i < imageSize; i++) {
List<int> pixelValues = [];
for (int j = 0; j < numImages; j++) {
pixelValues.add(images[j][i]);
}
pixelValues.sort();
int medianIndex = numImages ~/ 2;
result[i] = pixelValues[medianIndex];
}
return result;
}
Uint8List maxIntensityProjection(
List<Uint8List> textures, int width, int height) {
final int numTextures = textures.length;
final int size = width * height;
// Initialize the result with the first texture
Uint8List result = Uint8List.fromList(textures[0]);
// Iterate through all textures and perform max intensity projection
for (int t = 1; t < numTextures; t++) {
for (int i = 0; i < size * 4; i += 4) {
// Calculate intensity (using luminance formula)
double intensityCurrent =
0.299 * result[i] + 0.587 * result[i + 1] + 0.114 * result[i + 2];
double intensityNew = 0.299 * textures[t][i] +
0.587 * textures[t][i + 1] +
0.114 * textures[t][i + 2];
// If the new texture has higher intensity, use its values
if (intensityNew > intensityCurrent) {
result[i] = textures[t][i]; // R
result[i + 1] = textures[t][i + 1]; // G
result[i + 2] = textures[t][i + 2]; // B
result[i + 3] = textures[t][i + 3]; // A
}
}
}
return result;
}
// Helper function to blend MIP result with Poisson blending
Uint8List blendMIPWithPoisson(
Uint8List mipResult, Uint8List poissonResult, double alpha) {
final int size = mipResult.length;
Uint8List blendedResult = Uint8List(size);
for (int i = 0; i < size; i++) {
blendedResult[i] = (mipResult[i] * (1 - alpha) + poissonResult[i] * alpha)
.round()
.clamp(0, 255);
}
return blendedResult;
}
Uint8List pngToPixelBuffer(Uint8List pngData) {
// Decode the PNG image
final image = img.decodePng(pngData);
if (image == null) {
throw Exception('Failed to decode PNG image');
}
// Create a buffer for the raw pixel data
final rawPixels = Uint8List(image.width * image.height * 4);
// Convert the image to RGBA format
for (int y = 0; y < image.height; y++) {
for (int x = 0; x < image.width; x++) {
final pixel = image.getPixel(x, y);
final i = (y * image.width + x) * 4;
rawPixels[i] = pixel.r.toInt(); // Red
rawPixels[i + 1] = pixel.g.toInt(); // Green
rawPixels[i + 2] = pixel.b.toInt(); // Blue
rawPixels[i + 3] = pixel.a.toInt(); // Alpha
}
}
return rawPixels;
}
Uint8List medianBlending(List<Uint8List> textures, int width, int height) {
final int numTextures = textures.length;
final int size = width * height;
Uint8List result = Uint8List(size * 4);
for (int i = 0; i < size; i++) {
List<int> values = [];
for (int t = 0; t < numTextures; t++) {
if (textures[t][i * 4] != 0 ||
textures[t][i * 4 + 1] != 0 ||
textures[t][i * 4 + 2] != 0 ||
textures[t][i * 4 + 3] != 0) {
values.addAll(textures[t].sublist(i * 4, i * 4 + 4));
}
}
if (values.isNotEmpty) {
values.sort();
result[i] = values[values.length ~/ 2];
} else {
result[i] = 0; // If no valid data, set to transparent
}
}
return result;
}