Files
cup_edit/ios/include/utils/linux/Condition.h
2022-02-06 13:28:28 +08:00

124 lines
4.0 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef TNT_UTILS_LINUX_CONDITION_H
#define TNT_UTILS_LINUX_CONDITION_H
#include <atomic>
#include <chrono>
#include <condition_variable> // for cv_status
#include <limits>
#include <mutex> // for unique_lock
#include <utils/linux/Mutex.h>
#include <time.h>
namespace utils {
/*
* A very simple condition variable class that can be used as an (almost) drop-in replacement
* for std::condition_variable (doesn't have the timed wait() though).
* It is very low overhead as most of it is inlined.
*/
class Condition {
public:
Condition() noexcept = default;
Condition(const Condition&) = delete;
Condition& operator=(const Condition&) = delete;
void notify_all() noexcept {
pulse(std::numeric_limits<int>::max());
}
void notify_one() noexcept {
pulse(1);
}
void notify_n(size_t n) noexcept {
if (n > 0) pulse(n);
}
void wait(std::unique_lock<Mutex>& lock) noexcept {
wait_until(lock.mutex(), false, nullptr);
}
template <class P>
void wait(std::unique_lock<Mutex>& lock, P predicate) {
while (!predicate()) {
wait(lock);
}
}
template<typename D>
std::cv_status wait_until(std::unique_lock<Mutex>& lock,
const std::chrono::time_point<std::chrono::steady_clock, D>& timeout_time) noexcept {
// convert to nanoseconds
uint64_t ns = std::chrono::duration<uint64_t, std::nano>(timeout_time.time_since_epoch()).count();
using sec_t = decltype(timespec::tv_sec);
using nsec_t = decltype(timespec::tv_nsec);
timespec ts{ sec_t(ns / 1000000000), nsec_t(ns % 1000000000) };
return wait_until(lock.mutex(), false, &ts);
}
template<typename D>
std::cv_status wait_until(std::unique_lock<Mutex>& lock,
const std::chrono::time_point<std::chrono::system_clock, D>& timeout_time) noexcept {
// convert to nanoseconds
uint64_t ns = std::chrono::duration<uint64_t, std::nano>(timeout_time.time_since_epoch()).count();
using sec_t = decltype(timespec::tv_sec);
using nsec_t = decltype(timespec::tv_nsec);
timespec ts{ sec_t(ns / 1000000000), nsec_t(ns % 1000000000) };
return wait_until(lock.mutex(), true, &ts);
}
template<typename C, typename D, typename P>
bool wait_until(std::unique_lock<Mutex>& lock,
const std::chrono::time_point<C, D>& timeout_time, P predicate) noexcept {
while (!predicate()) {
if (wait_until(lock, timeout_time) == std::cv_status::timeout) {
return predicate();
}
}
return true;
}
template<typename R, typename Period>
std::cv_status wait_for(std::unique_lock<Mutex>& lock,
const std::chrono::duration<R, Period>& rel_time) noexcept {
return wait_until(lock, std::chrono::steady_clock::now() + rel_time);
}
template<typename R, typename Period, typename P>
bool wait_for(std::unique_lock<Mutex>& lock,
const std::chrono::duration<R, Period>& rel_time, P pred) noexcept {
return wait_until(lock, std::chrono::steady_clock::now() + rel_time, std::move(pred));
}
private:
std::atomic<uint32_t> mState = { 0 };
void pulse(int threadCount) noexcept;
std::cv_status wait_until(Mutex* lock,
bool realtimeClock, timespec* ts) noexcept;
};
} // namespace utils
#endif // TNT_UTILS_LINUX_CONDITION_H