Files
cup_edit/dart_filament/native/include/components/AnimationComponentManager.hpp
2024-06-04 22:20:24 +08:00

360 lines
16 KiB
C++

#pragma once
#include "Log.hpp"
#include <chrono>
#include <variant>
#include <filament/Engine.h>
#include <filament/RenderableManager.h>
#include <filament/Renderer.h>
#include <filament/Scene.h>
#include <filament/Texture.h>
#include <filament/TransformManager.h>
#include <math/vec3.h>
#include <math/vec4.h>
#include <math/mat3.h>
#include <math/norm.h>
#include <gltfio/Animator.h>
#include <gltfio/AssetLoader.h>
#include <gltfio/ResourceLoader.h>
#include <gltfio/math.h>
#include <utils/NameComponentManager.h>
template class std::vector<float>;
namespace flutter_filament
{
using namespace filament;
using namespace filament::gltfio;
using namespace utils;
using namespace std::chrono;
typedef std::chrono::time_point<std::chrono::high_resolution_clock> time_point_t;
enum AnimationType
{
MORPH,
BONE,
GLTF
};
struct AnimationStatus
{
time_point_t start = time_point_t::max();
bool loop = false;
bool reverse = false;
float durationInSecs = 0;
};
/// @brief
/// The status of an animation embedded in a glTF object.
/// @param index refers to the index of the animation in the animations property of the underlying object.
///
struct GltfAnimation : AnimationStatus
{
int index = -1;
};
//
// The status of a morph target animation created dynamically at runtime (not glTF embedded).
//
struct MorphAnimation : AnimationStatus
{
utils::Entity meshTarget;
int numFrames = -1;
float frameLengthInMs = 0;
std::vector<float> frameData;
std::vector<int> morphIndices;
int lengthInFrames;
};
//
// The status of a skeletal animation created dynamically at runtime (not glTF embedded).
//
struct BoneAnimation : AnimationStatus
{
size_t boneIndex;
size_t skinIndex = 0;
int lengthInFrames;
float frameLengthInMs = 0;
std::vector<math::mat4f> frameData;
float fadeOutInSecs = 0;
float fadeInInSecs = 0;
};
struct AnimationComponent
{
std::variant<FilamentInstance *, Entity> target;
std::vector<GltfAnimation> gltfAnimations;
std::vector<MorphAnimation> morphAnimations;
std::vector<BoneAnimation> boneAnimations;
// the index of the last active glTF animation,
// used to cross-fade
int fadeGltfAnimationIndex = -1;
float fadeDuration = 0.0f;
float fadeOutAnimationStart = 0.0f;
};
class AnimationComponentManager : public utils::SingleInstanceComponentManager<AnimationComponent>
{
filament::TransformManager &_transformManager;
filament::RenderableManager &_renderableManager;
public:
AnimationComponentManager(
filament::TransformManager &transformManager,
filament::RenderableManager &renderableManager) : _transformManager(transformManager),
_renderableManager(renderableManager){};
void addAnimationComponent(std::variant<FilamentInstance *, Entity> target)
{
AnimationComponent animationComponent;
animationComponent.target = target;
EntityInstanceBase::Type componentInstance;
if (std::holds_alternative<FilamentInstance *>(target))
{
auto instance = std::get<FilamentInstance *>(target);
if(!hasComponent(instance->getRoot())) {
componentInstance = addComponent(instance->getRoot());
this->elementAt<0>(componentInstance) = animationComponent;
}
}
else
{
auto entity = std::get<Entity>(target);
if(!hasComponent(entity)) {
componentInstance = addComponent(entity);
this->elementAt<0>(componentInstance) = animationComponent;
}
}
}
void removeAnimationComponent(std::variant<FilamentInstance *, Entity> target)
{
AnimationComponent animationComponent;
animationComponent.target = target;
EntityInstanceBase::Type componentInstance;
if (std::holds_alternative<FilamentInstance *>(target))
{
auto instance = std::get<FilamentInstance *>(target);
if(hasComponent(instance->getRoot())) {
removeComponent(instance->getRoot());
}
} else {
auto entity = std::get<Entity>(target);
if(hasComponent(entity)) {
removeComponent(entity);
}
}
}
void update()
{
for (auto it = begin(); it < end(); it++)
{
const auto &entity = getEntity(it);
auto componentInstance = getInstance(entity);
auto &animationComponent = elementAt<0>(componentInstance);
auto &morphAnimations = animationComponent.morphAnimations;
if (std::holds_alternative<FilamentInstance *>(animationComponent.target))
{
auto target = std::get<FilamentInstance *>(animationComponent.target);
auto animator = target->getAnimator();
auto &gltfAnimations = animationComponent.gltfAnimations;
auto &boneAnimations = animationComponent.boneAnimations;
if(gltfAnimations.size() > 0) {
for (int i = ((int)gltfAnimations.size()) - 1; i >= 0; i--)
{
auto now = high_resolution_clock::now();
auto animationStatus = animationComponent.gltfAnimations[i];
auto elapsedInSecs = float(std::chrono::duration_cast<std::chrono::milliseconds>(now - animationStatus.start).count()) / 1000.0f;
if (!animationStatus.loop && elapsedInSecs >= animationStatus.durationInSecs)
{
animator->applyAnimation(animationStatus.index, animationStatus.durationInSecs - 0.001);
animator->updateBoneMatrices();
gltfAnimations.erase(gltfAnimations.begin() + i);
animationComponent.fadeGltfAnimationIndex = -1;
continue;
}
animator->applyAnimation(animationStatus.index, elapsedInSecs);
if (animationComponent.fadeGltfAnimationIndex != -1 && elapsedInSecs < animationComponent.fadeDuration)
{
// cross-fade
auto fadeFromTime = animationComponent.fadeOutAnimationStart + elapsedInSecs;
auto alpha = elapsedInSecs / animationComponent.fadeDuration;
animator->applyCrossFade(animationComponent.fadeGltfAnimationIndex, fadeFromTime, alpha);
}
}
animator->updateBoneMatrices();
}
///
/// When fading in/out, interpolate between the "current" transform (which has possibly been set by the glTF animation loop above)
/// and the first (for fading in) or last (for fading out) frame.
///
for (int i = (int)boneAnimations.size() - 1; i >= 0; i--)
{
auto animationStatus = boneAnimations[i];
auto now = high_resolution_clock::now();
auto elapsedInMillis = float(std::chrono::duration_cast<std::chrono::milliseconds>(now - animationStatus.start).count());
auto elapsedInSecs = elapsedInMillis / 1000.0f;
// if we're not looping and the amount of time elapsed is greater than the animation duration plus the fade-in/out buffer,
// then the animation is completed and we can delete it
if (elapsedInSecs >= (animationStatus.durationInSecs + animationStatus.fadeInInSecs + animationStatus.fadeOutInSecs))
{
if(!animationStatus.loop) {
Log("Bone animation %d finished", i);
boneAnimations.erase(boneAnimations.begin() + i);
continue;
}
}
// if we're fading in, treat elapsedFrames is zero (and fading out, treat elapsedFrames as lengthInFrames)
float elapsedInFrames = (elapsedInMillis - (1000 * animationStatus.fadeInInSecs)) / animationStatus.frameLengthInMs;
int currFrame = std::floor(elapsedInFrames);
int nextFrame = currFrame;
// offset from the end if reverse
if (animationStatus.reverse)
{
currFrame = animationStatus.lengthInFrames - currFrame;
if (currFrame > 0)
{
nextFrame = currFrame - 1;
}
else
{
nextFrame = 0;
}
}
else
{
if (currFrame < animationStatus.lengthInFrames - 1)
{
nextFrame = currFrame + 1;
}
else
{
nextFrame = currFrame;
}
}
currFrame = std::clamp(currFrame, 0, animationStatus.lengthInFrames - 1);
nextFrame = std::clamp(nextFrame, 0, animationStatus.lengthInFrames - 1);
float frameDelta = elapsedInFrames - currFrame;
// linearly interpolate this animation between its last/current frames
// this is to avoid jerky animations when the animation framerate is slower than our tick rate
math::float3 currScale, newScale;
math::quatf currRotation, newRotation;
math::float3 currTranslation, newTranslation;
math::mat4f curr = animationStatus.frameData[currFrame];
decomposeMatrix(curr, &currTranslation, &currRotation, &currScale);
if(frameDelta > 0) {
math::mat4f next = animationStatus.frameData[nextFrame];
decomposeMatrix(next, &newTranslation, &newRotation, &newScale);
newScale = mix(currScale, newScale, frameDelta);
newRotation = slerp(currRotation, newRotation, frameDelta);
newTranslation = mix(currTranslation, newTranslation, frameDelta);
} else {
newScale = currScale;
newRotation = currRotation;
newTranslation = currTranslation;
}
const Entity joint = target->getJointsAt(animationStatus.skinIndex)[animationStatus.boneIndex];
// now calculate the fade out/in delta
// if we're fading in, this will be 0.0 at the start of the fade and 1.0 at the end
auto fadeDelta = elapsedInSecs / animationStatus.fadeInInSecs;
// if we're fading out, this will be 1.0 at the start of the fade and 0.0 at the end
if(fadeDelta > 1.0f) {
fadeDelta = 1 - ((elapsedInSecs - animationStatus.durationInSecs - animationStatus.fadeInInSecs) / animationStatus.fadeOutInSecs);
}
auto jointTransform = _transformManager.getInstance(joint);
// linearly interpolate this animation between its current (interpolated) frame and the current transform (i.e. as set by the gltf frame)
// // if we are fading in or out, apply a delta
if (fadeDelta >= 0.0f && fadeDelta <= 1.0f) {
math::float3 fadeScale;
math::quatf fadeRotation;
math::float3 fadeTranslation;
auto currentTransform = _transformManager.getTransform(jointTransform);
decomposeMatrix(currentTransform, &fadeTranslation, &fadeRotation, &fadeScale);
newScale = mix(fadeScale, newScale, fadeDelta);
newRotation = slerp(fadeRotation, newRotation, fadeDelta);
newTranslation = mix(fadeTranslation, newTranslation, fadeDelta);
}
_transformManager.setTransform(jointTransform, composeMatrix(newTranslation, newRotation, newScale));
animator->updateBoneMatrices();
if (animationStatus.loop && elapsedInSecs >= (animationStatus.durationInSecs + animationStatus.fadeInInSecs + animationStatus.fadeOutInSecs))
{
animationStatus.start = now;
}
}
}
for (int i = (int)morphAnimations.size() - 1; i >= 0; i--)
{
auto now = high_resolution_clock::now();
auto animationStatus = morphAnimations[i];
auto elapsedInSecs = float(std::chrono::duration_cast<std::chrono::milliseconds>(now - animationStatus.start).count()) / 1000.0f;
if (!animationStatus.loop && elapsedInSecs >= animationStatus.durationInSecs)
{
morphAnimations.erase(morphAnimations.begin() + i);
continue;
}
int frameNumber = static_cast<int>(elapsedInSecs * 1000.0f / animationStatus.frameLengthInMs) % animationStatus.lengthInFrames;
// offset from the end if reverse
if (animationStatus.reverse)
{
frameNumber = animationStatus.lengthInFrames - frameNumber;
}
auto baseOffset = frameNumber * animationStatus.morphIndices.size();
for (int i = 0; i < animationStatus.morphIndices.size(); i++)
{
auto morphIndex = animationStatus.morphIndices[i];
// set the weights appropriately
_renderableManager.setMorphWeights(
_renderableManager.getInstance(animationStatus.meshTarget),
animationStatus.frameData.data() + baseOffset + i,
1,
morphIndex);
}
}
}
}
};
}