206 lines
6.7 KiB
C++
206 lines
6.7 KiB
C++
/*
|
|
* Copyright (C) 2013 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef TNT_MATH_QUAT_H
|
|
#define TNT_MATH_QUAT_H
|
|
|
|
#include <math/TQuatHelpers.h>
|
|
#include <math/compiler.h>
|
|
#include <math/half.h>
|
|
#include <math/vec3.h>
|
|
#include <math/vec4.h>
|
|
|
|
#include <stdint.h>
|
|
#include <sys/types.h>
|
|
|
|
namespace filament {
|
|
namespace math {
|
|
// -------------------------------------------------------------------------------------
|
|
|
|
namespace details {
|
|
|
|
template<typename T>
|
|
class MATH_EMPTY_BASES TQuaternion :
|
|
public TVecAddOperators<TQuaternion, T>,
|
|
public TVecUnaryOperators<TQuaternion, T>,
|
|
public TVecComparisonOperators<TQuaternion, T>,
|
|
public TQuatProductOperators<TQuaternion, T>,
|
|
public TQuatFunctions<TQuaternion, T> {
|
|
public:
|
|
enum no_init {
|
|
NO_INIT
|
|
};
|
|
typedef T value_type;
|
|
typedef T& reference;
|
|
typedef T const& const_reference;
|
|
typedef size_t size_type;
|
|
|
|
/*
|
|
* quaternion internals stored as:
|
|
*
|
|
* q = w + xi + yj + zk
|
|
*
|
|
* q[0] = x;
|
|
* q[1] = y;
|
|
* q[2] = z;
|
|
* q[3] = w;
|
|
*
|
|
*/
|
|
union {
|
|
struct { T x, y, z, w; };
|
|
TVec4<T> xyzw;
|
|
TVec3<T> xyz;
|
|
TVec2<T> xy;
|
|
};
|
|
|
|
enum { SIZE = 4 };
|
|
inline constexpr static size_type size() { return SIZE; }
|
|
|
|
// array access
|
|
inline constexpr T const& operator[](size_t i) const {
|
|
// only possible in C++0x14 with constexpr
|
|
assert(i < SIZE);
|
|
return (&x)[i];
|
|
}
|
|
|
|
inline constexpr T& operator[](size_t i) {
|
|
assert(i < SIZE);
|
|
return (&x)[i];
|
|
}
|
|
|
|
// -----------------------------------------------------------------------
|
|
// we want the compiler generated versions for these...
|
|
TQuaternion(const TQuaternion&) = default;
|
|
~TQuaternion() = default;
|
|
TQuaternion& operator=(const TQuaternion&) = default;
|
|
|
|
// constructors
|
|
|
|
// leaves object uninitialized. use with caution.
|
|
explicit constexpr TQuaternion(no_init) {}
|
|
|
|
// default constructor. sets all values to zero.
|
|
constexpr TQuaternion() : x(0), y(0), z(0), w(0) {}
|
|
|
|
// handles implicit conversion to a quat. must not be explicit.
|
|
template<typename A, typename = enable_if_arithmetic_t<A>>
|
|
constexpr TQuaternion(A w) : x(0), y(0), z(0), w(w) {}
|
|
|
|
// initialize from 4 values to w + xi + yj + zk
|
|
template<typename A, typename B, typename C, typename D,
|
|
typename = enable_if_arithmetic_t<A, B, C, D>>
|
|
constexpr TQuaternion(A w, B x, C y, D z) : x(x), y(y), z(z), w(w) {}
|
|
|
|
// initialize from a vec3 + a value to : v.xi + v.yj + v.zk + w
|
|
template<typename A, typename B, typename = enable_if_arithmetic_t<A, B>>
|
|
constexpr TQuaternion(const TVec3<A>& v, B w) : x(v.x), y(v.y), z(v.z), w(w) {}
|
|
|
|
// initialize from a vec4
|
|
template<typename A, typename = enable_if_arithmetic_t<A>>
|
|
constexpr explicit TQuaternion(const TVec4<A>& v) : x(v.x), y(v.y), z(v.z), w(v.w) {}
|
|
|
|
// initialize from a quaternion of a different type
|
|
template<typename A, typename = enable_if_arithmetic_t<A>>
|
|
constexpr explicit TQuaternion(const TQuaternion<A>& v) : x(v.x), y(v.y), z(v.z), w(v.w) {}
|
|
|
|
// conjugate operator
|
|
constexpr TQuaternion operator~() const {
|
|
return conj(*this);
|
|
}
|
|
|
|
// constructs a quaternion from an axis and angle
|
|
template<typename A, typename B, typename = enable_if_arithmetic_t<A, B>>
|
|
constexpr static TQuaternion MATH_PURE fromAxisAngle(const TVec3<A>& axis, B angle) {
|
|
return TQuaternion(std::sin(angle * 0.5) * normalize(axis), std::cos(angle * 0.5));
|
|
}
|
|
|
|
// constructs a quaternion from orig to dest.
|
|
// it returns the shortest arc and `from` and `to` must be normalized.
|
|
template<typename A, typename B, typename = enable_if_arithmetic_t<A, B>>
|
|
constexpr static TQuaternion MATH_PURE fromDirectedRotation(const TVec3<A>& from, const TVec3<B>& to) {
|
|
// see the implementation of glm/gtx/quaternion.hpp
|
|
T cosTheta = dot(from, to);
|
|
TVec3<T> rotationAxis;
|
|
|
|
if (cosTheta >= T(1) - std::numeric_limits<T>::epsilon()) {
|
|
// orig and dest point in the same direction
|
|
return TQuaternion(1, 0, 0, 0);
|
|
}
|
|
|
|
if (cosTheta < T(-1) + std::numeric_limits<T>::epsilon()) {
|
|
// special case when vectors in opposite directions :
|
|
// there is no "ideal" rotation axis
|
|
// So guess one; any will do as long as it's perpendicular to start
|
|
// This implementation favors a rotation around the Up axis (Y),
|
|
// since it's often what you want to do.
|
|
rotationAxis = cross(TVec3<T>(0, 0, 1), from);
|
|
|
|
if (length2(rotationAxis) < std::numeric_limits<T>::epsilon()) {
|
|
// bad luck, they were parallel, try again!
|
|
rotationAxis = cross(TVec3<T>(1, 0, 0), from);
|
|
}
|
|
|
|
rotationAxis = normalize(rotationAxis);
|
|
return fromAxisAngle(rotationAxis, F_PI);
|
|
}
|
|
|
|
// implementation from Stan Melax's Game Programming Gems 1 article
|
|
rotationAxis = cross(from, to);
|
|
|
|
const T s = std::sqrt((T(1) + cosTheta) * T(2));
|
|
return TQuaternion(s * T(0.5),
|
|
rotationAxis.x / s, rotationAxis.y / s, rotationAxis.z / s);
|
|
}
|
|
};
|
|
|
|
} // namespace details
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
typedef details::TQuaternion<double> quat;
|
|
typedef details::TQuaternion<float> quatf;
|
|
typedef details::TQuaternion<half> quath;
|
|
|
|
constexpr inline quat operator "" _i(long double v) {
|
|
return quat(0.0, double(v), 0.0, 0.0);
|
|
}
|
|
|
|
constexpr inline quat operator "" _j(long double v) {
|
|
return quat(0.0, 0.0, double(v), 0.0);
|
|
}
|
|
|
|
constexpr inline quat operator "" _k(long double v) {
|
|
return quat(0.0, 0.0, 0.0, double(v));
|
|
}
|
|
|
|
constexpr inline quat operator "" _i(unsigned long long v) {
|
|
return quat(0.0, double(v), 0.0, 0.0);
|
|
}
|
|
|
|
constexpr inline quat operator "" _j(unsigned long long v) {
|
|
return quat(0.0, 0.0, double(v), 0.0);
|
|
}
|
|
|
|
constexpr inline quat operator "" _k(unsigned long long v) {
|
|
return quat(0.0, 0.0, 0.0, double(v));
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
} // namespace math
|
|
} // namespace filament
|
|
|
|
#endif // TNT_MATH_QUAT_H
|