Files
cup_edit/thermion_dart/native/src/scene/CustomGeometry.cpp
Nick Fisher ed444b0615 feature!:
This is a breaking change needed to fully implement instancing and stencil highlighting.

Previously, users would work directly with entities (on the Dart side, ThermionEntity), e.g.

final entity = await viewer.loadGlb("some.glb");

However, Filament "entities" are a lower-level abstraction.

Loading a glTF file, for example, inserts multiple entities into the scene.

For example, each mesh, light, and camera within a glTF asset will be assigned an entity. A top-level (non-renderable) entity will also be created for the glTF asset, which can be used to transform the entire hierarchy.

"Asset" is a better representation for loading/inserting objects into the scene; think of this as a bundle of entities.

Unless you need to work directly with transforms, instancing, materials and renderables, you can work directly with ThermionAsset.
2024-11-27 15:02:37 +11:00

240 lines
7.9 KiB
C++

#include "math.h"
#include <vector>
#include <filament/Engine.h>
#include <filament/Frustum.h>
#include <filament/RenderableManager.h>
#include <filament/Texture.h>
#include <filament/TransformManager.h>
#include <filament/Viewport.h>
#include <filament/geometry/SurfaceOrientation.h>
#include "scene/CustomGeometry.hpp"
#include "Log.hpp"
namespace thermion
{
using namespace filament;
CustomGeometry::CustomGeometry(float *vertices, uint32_t numVertices,
float *normals, uint32_t numNormals, float *uvs,
uint32_t numUvs, uint16_t *indices,
uint32_t numIndices,
MaterialInstance* materialInstance,
RenderableManager::PrimitiveType primitiveType,
Engine *engine)
: numVertices(numVertices), numIndices(numIndices), _materialInstance(materialInstance), _engine(engine)
{
this->primitiveType = primitiveType;
this->vertices = new float[numVertices];
std::memcpy(this->vertices, vertices, numVertices * sizeof(float));
if (numNormals > 0)
{
this->normals = new float[numNormals];
std::memcpy(this->normals, normals, numNormals * sizeof(float));
}
if (numUvs > 0)
{
this->uvs = new float[numUvs];
std::memcpy(this->uvs, uvs, numUvs * sizeof(float));
}
else
{
this->uvs = nullptr;
}
this->indices = new uint16_t[numIndices];
std::memcpy(this->indices, indices, numIndices * sizeof(uint16_t));
computeBoundingBox();
indexBuffer = IndexBuffer::Builder()
.indexCount(numIndices)
.bufferType(IndexBuffer::IndexType::USHORT)
.build(*_engine);
indexBuffer->setBuffer(*_engine,
IndexBuffer::BufferDescriptor(
this->indices,
indexBuffer->getIndexCount() * sizeof(uint16_t),
[](void *buf, size_t,
void *data)
{
free((void *)buf);
}));
std::vector<filament::math::float2> *uvData;
if (this->uvs != nullptr)
{
uvData = new std::vector<filament::math::float2>(
(filament::math::float2 *)this->uvs,
(filament::math::float2 *)(this->uvs + numVertices * 2));
}
else
{
uvData = new std::vector<filament::math::float2>(
numVertices, filament::math::float2{0.0f, 0.0f});
}
// Create dummy vertex color data (white color for all vertices)
auto dummyColors = new std::vector<filament::math::float4>(
numVertices, filament::math::float4{1.0f, 1.0f, 1.0f, 1.0f});
auto vertexBufferBuilder =
VertexBuffer::Builder()
.vertexCount(numVertices)
.attribute(VertexAttribute::POSITION, 0,
VertexBuffer::AttributeType::FLOAT3)
.attribute(VertexAttribute::UV0, 1,
VertexBuffer::AttributeType::FLOAT2)
.attribute(VertexAttribute::UV1, 2,
VertexBuffer::AttributeType::FLOAT2)
.attribute(VertexAttribute::COLOR, 3,
VertexBuffer::AttributeType::FLOAT4);
if (this->normals)
{
vertexBufferBuilder.bufferCount(5).attribute(
VertexAttribute::TANGENTS, 4,
filament::VertexBuffer::AttributeType::FLOAT4);
}
else
{
vertexBufferBuilder = vertexBufferBuilder.bufferCount(4);
}
vertexBuffer = vertexBufferBuilder.build(*_engine);
vertexBuffer->setBufferAt(
*_engine, 0,
VertexBuffer::BufferDescriptor(
this->vertices, numVertices * sizeof(math::float3),
[](void *buf, size_t, void *data)
{
free((void *)buf);
}));
// Set UV0 buffer
vertexBuffer->setBufferAt(
*_engine, 1,
VertexBuffer::BufferDescriptor(
uvData->data(), uvData->size() * sizeof(math::float2),
[](void *buf, size_t, void *data)
{
delete static_cast<std::vector<math::float2> *>(data);
},
uvData));
// Set UV1 buffer (reusing UV0 data)
vertexBuffer->setBufferAt(*_engine, 2,
VertexBuffer::BufferDescriptor(
uvData->data(),
uvData->size() * sizeof(math::float2),
[](void *buf, size_t, void *data)
{
// Do nothing here, as we're reusing the same
// data as UV0
},
nullptr));
// Set vertex color buffer
vertexBuffer->setBufferAt(
*_engine, 3,
VertexBuffer::BufferDescriptor(
dummyColors->data(), dummyColors->size() * sizeof(math::float4),
[](void *buf, size_t, void *data)
{
delete static_cast<std::vector<math::float4> *>(data);
},
dummyColors));
if (this->normals)
{
assert(this->primitiveType == RenderableManager::PrimitiveType::TRIANGLES);
std::vector<filament::math::ushort3> triangles;
for (int i = 0; i < numIndices; i += 3)
{
filament::math::ushort3 triangle;
triangle.x = this->indices[i];
triangle.y = this->indices[i + 1];
triangle.z = this->indices[i + 2];
triangles.push_back(triangle);
}
// Create a SurfaceOrientation builder
geometry::SurfaceOrientation::Builder builder;
builder.vertexCount(numVertices)
.normals((filament::math::float3 *)normals)
.positions((filament::math::float3 *)this->vertices)
.triangleCount(triangles.size())
.triangles(triangles.data());
// Build the SurfaceOrientation object
auto orientation = builder.build();
// Retrieve the quaternions
auto quats = new std::vector<filament::math::quatf>(numVertices);
orientation->getQuats(quats->data(), numVertices);
vertexBuffer->setBufferAt(*_engine, 4,
VertexBuffer::BufferDescriptor(
quats->data(),
quats->size() * sizeof(math::quatf),
[](void *buf, size_t, void *data)
{
delete (std::vector<math::quatf> *)data;
},
(void *)quats));
}
}
utils::Entity CustomGeometry::createInstance(MaterialInstance *materialInstance) {
auto entity = utils::EntityManager::get().create();
RenderableManager::Builder builder(1);
builder.boundingBox(boundingBox)
.geometry(0, primitiveType, vertexBuffer, indexBuffer, 0, numIndices)
.culling(true)
.receiveShadows(true)
.castShadows(true);
builder.material(0, materialInstance);
builder.build(*_engine, entity);
return entity;
}
CustomGeometry::~CustomGeometry()
{
_engine->destroy(vertexBuffer);
_engine->destroy(indexBuffer);
}
void CustomGeometry::computeBoundingBox()
{
float minX = FLT_MAX, minY = FLT_MAX, minZ = FLT_MAX;
float maxX = -FLT_MAX, maxY = -FLT_MAX, maxZ = -FLT_MAX;
for (uint32_t i = 0; i < numVertices; i += 3)
{
minX = std::min(vertices[i], minX);
minY = std::min(vertices[i + 1], minY);
minZ = std::min(vertices[i + 2], minZ);
maxX = std::max(vertices[i], maxX);
maxY = std::max(vertices[i + 1], maxY);
maxZ = std::max(vertices[i + 2], maxZ);
}
boundingBox = Box{{minX, minY, minZ}, {maxX, maxY, maxZ}};
}
} // namespace thermion