Files
cup_edit/thermion_dart/test/helpers.dart

485 lines
16 KiB
Dart

import 'dart:ffi';
import 'dart:io';
import 'dart:math';
import 'package:image/image.dart' as img;
import 'dart:typed_data';
import 'package:ffi/ffi.dart';
import 'package:thermion_dart/thermion_dart.dart';
import 'package:thermion_dart/thermion_dart/swift/swift_bindings.g.dart';
import 'package:thermion_dart/thermion_dart/utils/dart_resources.dart';
import 'package:thermion_dart/thermion_dart/thermion_viewer.dart';
import 'package:thermion_dart/thermion_dart/viewer/ffi/src/thermion_dart.g.dart';
import 'package:thermion_dart/thermion_dart/viewer/ffi/src/thermion_viewer_ffi.dart';
import 'package:vector_math/vector_math_64.dart';
/// Test files are run in a variety of ways, find this package root in all.
///
/// Test files can be run from source from any working directory. The Dart SDK
/// `tools/test.py` runs them from the root of the SDK for example.
///
/// Test files can be run from dill from the root of package. `package:test`
/// does this.
Uri findPackageRoot(String packageName) {
final script = Platform.script;
final fileName = script.name;
if (fileName.endsWith('_test.dart')) {
// We're likely running from source.
var directory = script.resolve('.');
while (true) {
final dirName = directory.name;
if (dirName == packageName) {
return directory;
}
final parent = directory.resolve('..');
if (parent == directory) break;
directory = parent;
}
} else if (fileName.endsWith('.dill')) {
final cwd = Directory.current.uri;
final dirName = cwd.name;
if (dirName == packageName) {
return cwd;
}
}
throw StateError("Could not find package root for package '$packageName'. "
'Tried finding the package root via Platform.script '
"'${Platform.script.toFilePath()}' and Directory.current "
"'${Directory.current.uri.toFilePath()}'.");
}
extension on Uri {
String get name => pathSegments.where((e) => e != '').last;
}
late String testDir;
Future<Uint8List> savePixelBufferToBmp(
Uint8List pixelBuffer, int width, int height, String outputPath) async {
var data = await pixelBufferToBmp(pixelBuffer, width, height);
File(outputPath).writeAsBytesSync(data);
print("Wrote bitmap to ${outputPath}");
return data;
}
Future<Uint8List> pixelBufferToBmp(
Uint8List pixelBuffer, int width, int height) async {
final rowSize = (width * 3 + 3) & ~3;
final padding = rowSize - (width * 3);
final fileSize = 54 + rowSize * height;
final data = Uint8List(fileSize);
final buffer = data.buffer;
final bd = ByteData.view(buffer);
// BMP file header (14 bytes)
bd.setUint16(0, 0x4D42, Endian.little); // 'BM'
bd.setUint32(2, fileSize, Endian.little);
bd.setUint32(10, 54, Endian.little); // Offset to pixel data
// BMP info header (40 bytes)
bd.setUint32(14, 40, Endian.little); // Info header size
bd.setInt32(18, width, Endian.little);
bd.setInt32(22, -height, Endian.little); // Negative for top-down
bd.setUint16(26, 1, Endian.little); // Number of color planes
bd.setUint16(28, 24, Endian.little); // Bits per pixel (RGB)
bd.setUint32(30, 0, Endian.little); // No compression
bd.setUint32(34, rowSize * height, Endian.little); // Image size
bd.setInt32(38, 2835, Endian.little); // X pixels per meter
bd.setInt32(42, 2835, Endian.little); // Y pixels per meter
// Pixel data (BMP stores in BGR format)
for (var y = 0; y < height; y++) {
for (var x = 0; x < width; x++) {
final srcIndex = (y * width + x) * 4; // RGBA format
final dstIndex = 54 + y * rowSize + x * 3; // BGR format
data[dstIndex] = pixelBuffer[srcIndex + 2]; // Blue
data[dstIndex + 1] = pixelBuffer[srcIndex + 1]; // Green
data[dstIndex + 2] = pixelBuffer[srcIndex]; // Red
// Alpha channel is discarded
}
// Add padding to the end of each row
for (var p = 0; p < padding; p++) {
data[54 + y * rowSize + width * 3 + p] = 0;
}
}
return data;
}
Future<Uint8List> pixelsToPng(Uint8List pixelBuffer, int width, int height,
{bool linearToSrgb = false}) async {
final image = img.Image(width: width, height: height);
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
final int pixelIndex = (y * width + x) * 4;
double r = pixelBuffer[pixelIndex] / 255.0;
double g = pixelBuffer[pixelIndex + 1] / 255.0;
double b = pixelBuffer[pixelIndex + 2] / 255.0;
int a = pixelBuffer[pixelIndex + 3];
// Apply inverse ACES tone mapping
bool invertAces = false;
if (invertAces) {
r = _inverseACESToneMapping(r);
g = _inverseACESToneMapping(g);
b = _inverseACESToneMapping(b);
}
if (linearToSrgb) {
// Convert from linear to sRGB
image.setPixel(
x,
y,
img.ColorUint8(4)
..setRgba(
_linearToSRGB(r), _linearToSRGB(g), _linearToSRGB(b), 1.0));
} else {
image.setPixel(
x,
y,
img.ColorUint8(4)
..setRgba((r * 255).toInt(), (g * 255).toInt(), (b * 255).toInt(),
1.0));
}
}
}
return img.encodePng(image);
}
double _inverseACESToneMapping(double x) {
const double a = 2.51;
const double b = 0.03;
const double c = 2.43;
const double d = 0.59;
const double e = 0.14;
// Ensure x is in the valid range [0, 1]
x = x.clamp(0.0, 1.0);
// Inverse ACES filmic tone mapping function
return (x * (x * a + b)) / (x * (x * c + d) + e);
}
int _linearToSRGB(double linearValue) {
if (linearValue <= 0.0031308) {
return (linearValue * 12.92 * 255.0).round().clamp(0, 255);
} else {
return ((1.055 * pow(linearValue, 1.0 / 2.4) - 0.055) * 255.0)
.round()
.clamp(0, 255);
}
}
Future<ThermionViewer> createViewer(
{img.Color? bg,
Vector3? cameraPosition,
viewportDimensions = (width: 500, height: 500)}) async {
final packageUri = findPackageRoot('thermion_dart');
final lib = ThermionDartTexture1(DynamicLibrary.open(
'${packageUri.toFilePath()}/native/lib/macos/swift/libthermion_swift.dylib'));
final object = ThermionDartTexture.new1(lib);
object.initWithWidth_height_(
viewportDimensions.width, viewportDimensions.height);
final resourceLoader = calloc<ResourceLoaderWrapper>(1);
var loadToOut = NativeCallable<
Void Function(Pointer<Char>,
Pointer<ResourceBuffer>)>.listener(DartResourceLoader.loadResource);
resourceLoader.ref.loadToOut = loadToOut.nativeFunction;
var freeResource = NativeCallable<Void Function(ResourceBuffer)>.listener(
DartResourceLoader.freeResource);
resourceLoader.ref.freeResource = freeResource.nativeFunction;
var viewer = ThermionViewerFFI(resourceLoader: resourceLoader.cast<Void>());
await viewer.initialized;
await viewer.createSwapChain(viewportDimensions.width.toDouble(),
viewportDimensions.height.toDouble());
await viewer.createRenderTarget(viewportDimensions.width.toDouble(),
viewportDimensions.height.toDouble(), object.metalTextureAddress);
await viewer.updateViewportAndCameraProjection(
viewportDimensions.width.toDouble(),
viewportDimensions.height.toDouble());
if (bg != null) {
await viewer.setBackgroundColor(
bg.r.toDouble(), bg.g.toDouble(), bg.b.toDouble(), bg.a.toDouble());
}
if (cameraPosition != null) {
await viewer.setCameraPosition(
cameraPosition.x, cameraPosition.y, cameraPosition.z);
}
return viewer;
}
Uint8List poissonBlend(List<Uint8List> textures, int width, int height) {
final int numTextures = textures.length;
final int size = width * height;
// Initialize the result
List<Vector4> result = List.generate(size, (_) => Vector4(0, 0, 0, 0));
List<bool> validPixel = List.generate(size, (_) => false);
// Compute gradients and perform simplified Poisson blending
for (int y = 1; y < height - 1; y++) {
for (int x = 1; x < width - 1; x++) {
int index = y * width + x;
Vector4 gradX = Vector4(0, 0, 0, 0);
Vector4 gradY = Vector4(0, 0, 0, 0);
bool hasValidData = false;
for (int t = 0; t < numTextures; t++) {
int i = index * 4;
if (textures[t][i] == 0 &&
textures[t][i + 1] == 0 &&
textures[t][i + 2] == 0 &&
textures[t][i + 3] == 0) {
continue; // Skip this texture if the pixel is empty
}
hasValidData = true;
int iLeft = (y * width + x - 1) * 4;
int iRight = (y * width + x + 1) * 4;
int iUp = ((y - 1) * width + x) * 4;
int iDown = ((y + 1) * width + x) * 4;
Vector4 gx = Vector4(
(textures[t][iRight] - textures[t][iLeft]) / 2,
(textures[t][iRight + 1] - textures[t][iLeft + 1]) / 2,
(textures[t][iRight + 2] - textures[t][iLeft + 2]) / 2,
(textures[t][iRight + 3] - textures[t][iLeft + 3]) / 2);
Vector4 gy = Vector4(
(textures[t][iDown] - textures[t][iUp]) / 2,
(textures[t][iDown + 1] - textures[t][iUp + 1]) / 2,
(textures[t][iDown + 2] - textures[t][iUp + 2]) / 2,
(textures[t][iDown + 3] - textures[t][iUp + 3]) / 2);
// Select the gradient with larger magnitude
double magX = gx.r * gx.r + gx.g * gx.g + gx.b * gx.b + gx.a * gx.a;
double magY = gy.r * gy.r + gy.g * gy.g + gy.b * gy.b + gy.a * gy.a;
if (magX >
gradX.r * gradX.r +
gradX.g * gradX.g +
gradX.b * gradX.b +
gradX.a * gradX.a) {
gradX = gx;
}
if (magY >
gradY.r * gradY.r +
gradY.g * gradY.g +
gradY.b * gradY.b +
gradY.a * gradY.a) {
gradY = gy;
}
}
if (hasValidData) {
validPixel[index] = true;
// Simplified Poisson equation solver (Jacobi iteration)
result[index].r = (result[index - 1].r +
result[index + 1].r +
result[index - width].r +
result[index + width].r +
gradX.r -
gradY.r) /
4;
result[index].g = (result[index - 1].g +
result[index + 1].g +
result[index - width].g +
result[index + width].g +
gradX.g -
gradY.g) /
4;
result[index].b = (result[index - 1].b +
result[index + 1].b +
result[index - width].b +
result[index + width].b +
gradX.b -
gradY.b) /
4;
result[index].a = (result[index - 1].a +
result[index + 1].a +
result[index - width].a +
result[index + width].a +
gradX.a -
gradY.a) /
4;
}
}
}
// Fill in gaps and normalize
Uint8List finalResult = Uint8List(size * 4);
for (int i = 0; i < size; i++) {
if (validPixel[i]) {
finalResult[i * 4] = (result[i].r.clamp(0, 255)).toInt();
finalResult[i * 4 + 1] = (result[i].g.clamp(0, 255)).toInt();
finalResult[i * 4 + 2] = (result[i].b.clamp(0, 255)).toInt();
finalResult[i * 4 + 3] = (result[i].a.clamp(0, 255)).toInt();
} else {
// For invalid pixels, try to interpolate from neighbors
List<int> validNeighbors = [];
if (i > width && validPixel[i - width]) validNeighbors.add(i - width);
if (i < size - width && validPixel[i + width])
validNeighbors.add(i + width);
if (i % width > 0 && validPixel[i - 1]) validNeighbors.add(i - 1);
if (i % width < width - 1 && validPixel[i + 1]) validNeighbors.add(i + 1);
if (validNeighbors.isNotEmpty) {
double r = 0, g = 0, b = 0, a = 0;
for (int neighbor in validNeighbors) {
r += result[neighbor].r;
g += result[neighbor].g;
b += result[neighbor].b;
a += result[neighbor].a;
}
finalResult[i * 4] = (r / validNeighbors.length).clamp(0, 255).toInt();
finalResult[i * 4 + 1] =
(g / validNeighbors.length).clamp(0, 255).toInt();
finalResult[i * 4 + 2] =
(b / validNeighbors.length).clamp(0, 255).toInt();
finalResult[i * 4 + 3] =
(a / validNeighbors.length).clamp(0, 255).toInt();
} else {
// If no valid neighbors, set to transparent black
finalResult[i * 4] = 0;
finalResult[i * 4 + 1] = 0;
finalResult[i * 4 + 2] = 0;
finalResult[i * 4 + 3] = 0;
}
}
}
return finalResult;
}
Uint8List medianImages(List<Uint8List> images) {
if (images.isEmpty) {
return Uint8List(0);
}
int imageSize = images[0].length;
Uint8List result = Uint8List(imageSize);
int numImages = images.length;
for (int i = 0; i < imageSize; i++) {
List<int> pixelValues = [];
for (int j = 0; j < numImages; j++) {
pixelValues.add(images[j][i]);
}
pixelValues.sort();
int medianIndex = numImages ~/ 2;
result[i] = pixelValues[medianIndex];
}
return result;
}
Uint8List maxIntensityProjection(
List<Uint8List> textures, int width, int height) {
final int numTextures = textures.length;
final int size = width * height;
// Initialize the result with the first texture
Uint8List result = Uint8List.fromList(textures[0]);
// Iterate through all textures and perform max intensity projection
for (int t = 1; t < numTextures; t++) {
for (int i = 0; i < size * 4; i += 4) {
// Calculate intensity (using luminance formula)
double intensityCurrent =
0.299 * result[i] + 0.587 * result[i + 1] + 0.114 * result[i + 2];
double intensityNew = 0.299 * textures[t][i] +
0.587 * textures[t][i + 1] +
0.114 * textures[t][i + 2];
// If the new texture has higher intensity, use its values
if (intensityNew > intensityCurrent) {
result[i] = textures[t][i]; // R
result[i + 1] = textures[t][i + 1]; // G
result[i + 2] = textures[t][i + 2]; // B
result[i + 3] = textures[t][i + 3]; // A
}
}
}
return result;
}
// Helper function to blend MIP result with Poisson blending
Uint8List blendMIPWithPoisson(
Uint8List mipResult, Uint8List poissonResult, double alpha) {
final int size = mipResult.length;
Uint8List blendedResult = Uint8List(size);
for (int i = 0; i < size; i++) {
blendedResult[i] = (mipResult[i] * (1 - alpha) + poissonResult[i] * alpha)
.round()
.clamp(0, 255);
}
return blendedResult;
}
Uint8List pngToPixelBuffer(Uint8List pngData) {
// Decode the PNG image
final image = img.decodePng(pngData);
if (image == null) {
throw Exception('Failed to decode PNG image');
}
// Create a buffer for the raw pixel data
final rawPixels = Uint8List(image.width * image.height * 4);
// Convert the image to RGBA format
for (int y = 0; y < image.height; y++) {
for (int x = 0; x < image.width; x++) {
final pixel = image.getPixel(x, y);
final i = (y * image.width + x) * 4;
rawPixels[i] = pixel.r.toInt(); // Red
rawPixels[i + 1] = pixel.g.toInt(); // Green
rawPixels[i + 2] = pixel.b.toInt(); // Blue
rawPixels[i + 3] = pixel.a.toInt(); // Alpha
}
}
return rawPixels;
}
Uint8List medianBlending(List<Uint8List> textures, int width, int height) {
final int numTextures = textures.length;
final int size = width * height;
Uint8List result = Uint8List(size * 4);
for (int i = 0; i < size; i++) {
List<int> values = [];
for (int t = 0; t < numTextures; t++) {
if (textures[t][i * 4] != 0 ||
textures[t][i * 4 + 1] != 0 ||
textures[t][i * 4 + 2] != 0 ||
textures[t][i * 4 + 3] != 0) {
values.addAll(textures[t].sublist(i * 4, i * 4 + 4));
}
}
if (values.isNotEmpty) {
values.sort();
result[i] = values[values.length ~/ 2];
} else {
result[i] = 0; // If no valid data, set to transparent
}
}
return result;
}