Files
cup_edit/macos/include/math/quat.h

201 lines
6.6 KiB
C++

/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef TNT_MATH_QUAT_H
#define TNT_MATH_QUAT_H
#include <math/TQuatHelpers.h>
#include <math/compiler.h>
#include <math/half.h>
#include <math/vec3.h>
#include <math/vec4.h>
#include <stdint.h>
#include <sys/types.h>
namespace filament::math {
namespace details {
template<typename T>
class MATH_EMPTY_BASES TQuaternion :
public TVecAddOperators<TQuaternion, T>,
public TVecUnaryOperators<TQuaternion, T>,
public TVecComparisonOperators<TQuaternion, T>,
public TQuatProductOperators<TQuaternion, T>,
public TQuatFunctions<TQuaternion, T> {
public:
enum no_init {
NO_INIT
};
typedef T value_type;
typedef T& reference;
typedef T const& const_reference;
typedef size_t size_type;
/*
* quaternion internals stored as:
*
* q = w + xi + yj + zk
*
* q[0] = x;
* q[1] = y;
* q[2] = z;
* q[3] = w;
*
*/
union {
struct { T x, y, z, w; };
TVec4<T> xyzw;
TVec3<T> xyz;
TVec2<T> xy;
};
enum { SIZE = 4 };
inline constexpr static size_type size() { return SIZE; }
// array access
inline constexpr T const& operator[](size_t i) const {
// only possible in C++0x14 with constexpr
assert(i < SIZE);
return (&x)[i];
}
inline constexpr T& operator[](size_t i) {
assert(i < SIZE);
return (&x)[i];
}
// -----------------------------------------------------------------------
// we want the compiler generated versions for these...
TQuaternion(const TQuaternion&) = default;
~TQuaternion() = default;
TQuaternion& operator=(const TQuaternion&) = default;
// constructors
// Leaves object uninitialized. Use with caution.
explicit constexpr TQuaternion(no_init) {}
// default constructor. sets all values to zero.
constexpr TQuaternion() : x(0), y(0), z(0), w(0) {}
// Handles implicit conversion to a quat. Must not be explicit.
template<typename A, typename = enable_if_arithmetic_t<A>>
constexpr TQuaternion(A w) : x(0), y(0), z(0), w(w) {} // NOLINT(google-explicit-constructor)
// initialize from 4 values to w + xi + yj + zk
template<typename A, typename B, typename C, typename D,
typename = enable_if_arithmetic_t<A, B, C, D>>
constexpr TQuaternion(A w, B x, C y, D z) : x(x), y(y), z(z), w(w) {}
// initialize from a vec3 + a value to : v.xi + v.yj + v.zk + w
template<typename A, typename B, typename = enable_if_arithmetic_t<A, B>>
constexpr TQuaternion(const TVec3<A>& v, B w) : x(v.x), y(v.y), z(v.z), w(w) {}
// initialize from a vec4
template<typename A, typename = enable_if_arithmetic_t<A>>
constexpr explicit TQuaternion(const TVec4<A>& v) : x(v.x), y(v.y), z(v.z), w(v.w) {}
// initialize from a quaternion of a different type
template<typename A, typename = enable_if_arithmetic_t<A>>
constexpr explicit TQuaternion(const TQuaternion<A>& v) : x(v.x), y(v.y), z(v.z), w(v.w) {}
// conjugate operator
constexpr TQuaternion operator~() const {
return conj(*this);
}
// constructs a quaternion from an axis and angle
template<typename A, typename B, typename = enable_if_arithmetic_t<A, B>>
constexpr static TQuaternion MATH_PURE fromAxisAngle(const TVec3<A>& axis, B angle) {
return TQuaternion(std::sin(angle * 0.5) * normalize(axis), std::cos(angle * 0.5));
}
// constructs a quaternion from orig to dest.
// it returns the shortest arc and `from` and `to` must be normalized.
template<typename A, typename B, typename = enable_if_arithmetic_t<A, B>>
constexpr static TQuaternion MATH_PURE fromDirectedRotation(const TVec3<A>& from, const TVec3<B>& to) {
// see the implementation of glm/gtx/quaternion.hpp
T cosTheta = dot(from, to);
TVec3<T> rotationAxis;
if (cosTheta >= T(1) - std::numeric_limits<T>::epsilon()) {
// orig and dest point in the same direction
return TQuaternion(1, 0, 0, 0);
}
if (cosTheta < T(-1) + std::numeric_limits<T>::epsilon()) {
// special case when vectors in opposite directions :
// there is no "ideal" rotation axis
// So guess one; any will do as long as it's perpendicular to start
// This implementation favors a rotation around the Up axis (Y),
// since it's often what you want to do.
rotationAxis = cross(TVec3<T>(0, 0, 1), from);
if (length2(rotationAxis) < std::numeric_limits<T>::epsilon()) {
// bad luck, they were parallel, try again!
rotationAxis = cross(TVec3<T>(1, 0, 0), from);
}
rotationAxis = normalize(rotationAxis);
return fromAxisAngle(rotationAxis, F_PI);
}
// implementation from Stan Melax's Game Programming Gems 1 article
rotationAxis = cross(from, to);
const T s = std::sqrt((T(1) + cosTheta) * T(2));
return TQuaternion(s * T(0.5),
rotationAxis.x / s, rotationAxis.y / s, rotationAxis.z / s);
}
};
} // namespace details
// ----------------------------------------------------------------------------------------
typedef details::TQuaternion<double> quat;
typedef details::TQuaternion<float> quatf;
typedef details::TQuaternion<half> quath;
constexpr inline quat operator "" _i(long double v) {
return { 0.0, double(v), 0.0, 0.0 };
}
constexpr inline quat operator "" _j(long double v) {
return { 0.0, 0.0, double(v), 0.0 };
}
constexpr inline quat operator "" _k(long double v) {
return { 0.0, 0.0, 0.0, double(v) };
}
constexpr inline quat operator "" _i(unsigned long long v) {
return { 0.0, double(v), 0.0, 0.0 };
}
constexpr inline quat operator "" _j(unsigned long long v) {
return { 0.0, 0.0, double(v), 0.0 };
}
constexpr inline quat operator "" _k(unsigned long long v) {
return { 0.0, 0.0, 0.0, double(v) };
}
} // namespace filament::math
#endif // TNT_MATH_QUAT_H