Files
cup_edit/thermion_dart/native/src/UnprojectTexture.cpp
Nick Fisher ed444b0615 feature!:
This is a breaking change needed to fully implement instancing and stencil highlighting.

Previously, users would work directly with entities (on the Dart side, ThermionEntity), e.g.

final entity = await viewer.loadGlb("some.glb");

However, Filament "entities" are a lower-level abstraction.

Loading a glTF file, for example, inserts multiple entities into the scene.

For example, each mesh, light, and camera within a glTF asset will be assigned an entity. A top-level (non-renderable) entity will also be created for the glTF asset, which can be used to transform the entire hierarchy.

"Asset" is a better representation for loading/inserting objects into the scene; think of this as a bundle of entities.

Unless you need to work directly with transforms, instancing, materials and renderables, you can work directly with ThermionAsset.
2024-11-27 15:02:37 +11:00

212 lines
9.9 KiB
C++

#include <filament/Engine.h>
#include <filament/Camera.h>
#include <filament/Texture.h>
#include <filament/VertexBuffer.h>
#include <filament/IndexBuffer.h>
#include <filament/RenderableManager.h>
#include <filament/TransformManager.h>
#include <math/mat4.h>
#include <math/vec2.h>
#include <math/vec3.h>
#include <math/vec4.h>
#include <utils/EntityManager.h>
#include <backend/PixelBufferDescriptor.h>
#include "Log.hpp"
#include <vector>
#include <algorithm>
#include <iostream>
#include "scene/CustomGeometry.hpp"
#include "UnprojectTexture.hpp"
namespace thermion
{
bool UnprojectTexture::isInsideTriangle(const math::float2 &p, const math::float2 &a, const math::float2 &b, const math::float2 &c)
{
float d1 = (p.x - b.x) * (a.y - b.y) - (a.x - b.x) * (p.y - b.y);
float d2 = (p.x - c.x) * (b.y - c.y) - (b.x - c.x) * (p.y - c.y);
float d3 = (p.x - a.x) * (c.y - a.y) - (c.x - a.x) * (p.y - a.y);
return (d1 >= 0 && d2 >= 0 && d3 >= 0) || (d1 <= 0 && d2 <= 0 && d3 <= 0);
}
math::float3 UnprojectTexture::barycentric(const math::float2 &p, const math::float2 &a, const math::float2 &b, const math::float2 &c)
{
math::float2 v0 = b - a;
math::float2 v1 = c - a;
math::float2 v2 = p - a;
float d00 = dot(v0, v0);
float d01 = dot(v0, v1);
float d11 = dot(v1, v1);
float d20 = dot(v2, v0);
float d21 = dot(v2, v1);
float denom = d00 * d11 - d01 * d01;
float v = (d11 * d20 - d01 * d21) / denom;
float w = (d00 * d21 - d01 * d20) / denom;
float u = 1.0f - v - w;
return math::float3(u, v, w);
}
void UnprojectTexture::unproject(utils::Entity entity, const uint8_t *inputTexture, uint8_t *outputTexture,
uint32_t inputWidth, uint32_t inputHeight,
uint32_t outputWidth, uint32_t outputHeight)
{
// auto &rm = _engine->getRenderableManager();
// auto &tm = _engine->getTransformManager();
// math::mat4 invViewProj = Camera::inverseProjection(_camera.getProjectionMatrix()) * _camera.getModelMatrix();
// auto ti = tm.getInstance(entity);
// math::mat4f worldTransform = tm.getWorldTransform(ti);
// auto inverseWorldTransform = inverse(worldTransform);
// const float *vertices = _geometry->vertices;
// const float *uvs = _geometry->uvs;
// const uint16_t *indices = _geometry->indices;
// uint32_t numIndices = _geometry->numIndices;
// // Create a depth buffer
// std::vector<float> depthBuffer(inputWidth * inputHeight, std::numeric_limits<float>::infinity());
// // Create a buffer to store the triangle index for each pixel
// std::vector<int> triangleIndexBuffer(inputWidth * inputHeight, -1);
// auto max = 0.0f;
// auto min = 99.0f;
// // Depth pre-pass
// for (size_t i = 0; i < numIndices; i += 3)
// {
// math::float3 v0(vertices[indices[i] * 3], vertices[indices[i] * 3 + 1], vertices[indices[i] * 3 + 2]);
// math::float3 v1(vertices[indices[i + 1] * 3], vertices[indices[i + 1] * 3 + 1], vertices[indices[i + 1] * 3 + 2]);
// math::float3 v2(vertices[indices[i + 2] * 3], vertices[indices[i + 2] * 3 + 1], vertices[indices[i + 2] * 3 + 2]);
// math::float2 uv0(uvs[(indices[i] * 2)], uvs[(indices[i] * 2) + 1]);
// math::float2 uv1(uvs[(indices[i + 1] * 2)], uvs[(indices[i + 1] * 2) + 1]);
// math::float2 uv2(uvs[(indices[i + 2] * 2)], uvs[(indices[i + 2] * 2) + 1]);
// // Transform vertices to world space
// v0 = (worldTransform * math::float4(v0, 1.0f)).xyz;
// v1 = (worldTransform * math::float4(v1, 1.0f)).xyz;
// v2 = (worldTransform * math::float4(v2, 1.0f)).xyz;
// // Project vertices to screen space
// math::float4 clipPos0 = _camera.getProjectionMatrix() * _camera.getViewMatrix() * math::float4(v0, 1.0f);
// math::float4 clipPos1 = _camera.getProjectionMatrix() * _camera.getViewMatrix() * math::float4(v1, 1.0f);
// math::float4 clipPos2 = _camera.getProjectionMatrix() * _camera.getViewMatrix() * math::float4(v2, 1.0f);
// math::float3 ndcPos0 = clipPos0.xyz / clipPos0.w;
// math::float3 ndcPos1 = clipPos1.xyz / clipPos1.w;
// math::float3 ndcPos2 = clipPos2.xyz / clipPos2.w;
// // Convert NDC to screen coordinates
// math::float2 screenPos0((ndcPos0.x * 0.5f + 0.5f) * inputWidth, (1.0f - (ndcPos0.y * 0.5f + 0.5f)) * inputHeight);
// math::float2 screenPos1((ndcPos1.x * 0.5f + 0.5f) * inputWidth, (1.0f - (ndcPos1.y * 0.5f + 0.5f)) * inputHeight);
// math::float2 screenPos2((ndcPos2.x * 0.5f + 0.5f) * inputWidth, (1.0f - (ndcPos2.y * 0.5f + 0.5f)) * inputHeight);
// // Compute bounding box of the triangle
// int minX = std::max(0, static_cast<int>(std::min({screenPos0.x, screenPos1.x, screenPos2.x})));
// int maxX = std::min(static_cast<int>(inputWidth) - 1, static_cast<int>(std::max({screenPos0.x, screenPos1.x, screenPos2.x})));
// int minY = std::max(0, static_cast<int>(std::min({screenPos0.y, screenPos1.y, screenPos2.y})));
// int maxY = std::min(static_cast<int>(inputHeight) - 1, static_cast<int>(std::max({screenPos0.y, screenPos1.y, screenPos2.y})));
// // Iterate over the bounding box
// for (int y = minY; y <= maxY; ++y)
// {
// for (int x = minX; x <= maxX; ++x)
// {
// math::float2 pixelPos(x + 0.5f, y + 0.5f);
// if (isInsideTriangle(pixelPos, screenPos0, screenPos1, screenPos2))
// {
// math::float3 bary = barycentric(pixelPos, screenPos0, screenPos1, screenPos2);
// // Interpolate depth
// float depth = bary.x * ndcPos0.z + bary.y * ndcPos1.z + bary.z * ndcPos2.z;
// // Depth test
// if (depth < depthBuffer[y * inputWidth + x])
// {
// if (depth > max)
// {
// max = depth;
// }
// if (depth < min)
// {
// min = depth;
// }
// depthBuffer[y * inputWidth + x] = depth;
// triangleIndexBuffer[y * inputWidth + x] = i / 3; // Store triangle index
// }
// }
// }
// }
// }
// for (uint32_t y = 0; y < outputHeight; ++y)
// {
// for (uint32_t x = 0; x < outputWidth; ++x)
// {
// math::float2 uv(static_cast<float>(x) / outputWidth, static_cast<float>(y) / outputHeight);
// // Use the UV coordinates to get the corresponding 3D position on the renderable
// math::float3 objectPos;
// math::float2 interpolatedUV;
// bool found = false;
// // Iterate over triangles to find which one contains this UV coordinate
// for (size_t i = 0; i < numIndices; i += 3)
// {
// math::float2 uv0 = *(math::float2 *)&uvs[indices[i] * 2];
// math::float2 uv1 = *(math::float2 *)&uvs[indices[i + 1] * 2];
// math::float2 uv2 = *(math::float2 *)&uvs[indices[i + 2] * 2];
// if (isInsideTriangle(uv, uv0, uv1, uv2))
// {
// // Compute barycentric coordinates in UV space
// math::float3 bary = barycentric(uv, uv0, uv1, uv2);
// // Interpolate 3D position
// math::float3 v0(vertices[indices[i] * 3], vertices[indices[i] * 3 + 1], vertices[indices[i] * 3 + 2]);
// math::float3 v1(vertices[indices[i + 1] * 3], vertices[indices[i + 1] * 3 + 1], vertices[indices[i + 1] * 3 + 2]);
// math::float3 v2(vertices[indices[i + 2] * 3], vertices[indices[i + 2] * 3 + 1], vertices[indices[i + 2] * 3 + 2]);
// objectPos = v0 * bary.x + v1 * bary.y + v2 * bary.z;
// interpolatedUV = uv;
// // Find the screen coordinates on the input texture
// math::float3 worldPos = (worldTransform * math::float4(objectPos, 1.0f)).xyz;
// // Project the world position to screen space
// math::float4 clipPos = _camera.getProjectionMatrix() * _camera.getViewMatrix() * math::float4(worldPos, 1.0f);
// math::float3 ndcPos = clipPos.xyz / clipPos.w;
// // Convert NDC to screen coordinates
// uint32_t screenX = (ndcPos.x * 0.5f + 0.5f) * inputWidth;
// uint32_t screenY = (1.0f - (ndcPos.y * 0.5f + 0.5f)) * inputHeight;
// if (triangleIndexBuffer[(screenY * inputWidth) + screenX] == i / 3)
// {
// if (screenX >= 0 && screenX < inputWidth && screenY >= 0 && screenY < inputHeight)
// {
// int inputIndex = (screenY * inputWidth + screenX) * 4;
// int outputIndex = (y * outputWidth + x) * 4;
// std::copy_n(&inputTexture[inputIndex], 4, &outputTexture[outputIndex]);
// }
// }
// }
// }
// }
// }
}
} // namespace thermion