Files
cup_edit/ios/src/FilamentViewer.cpp
2022-03-29 15:49:03 +08:00

774 lines
24 KiB
C++

/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "FilamentViewer.hpp"
#include <filament/Camera.h>
#include <filament/ColorGrading.h>
#include <filament/Engine.h>
#include <filament/IndexBuffer.h>
#include <filament/RenderableManager.h>
#include <filament/Renderer.h>
#include <filament/Scene.h>
#include <filament/Skybox.h>
#include <filament/TransformManager.h>
#include <filament/VertexBuffer.h>
#include <filament/View.h>
#include <filament/Viewport.h>
#include <filament/IndirectLight.h>
#include <filament/LightManager.h>
#include <gltfio/AssetLoader.h>
#include <gltfio/FilamentAsset.h>
#include <gltfio/ResourceLoader.h>
#include <gltfio/Animator.h>
#include <camutils/Manipulator.h>
#include <utils/NameComponentManager.h>
#include <utils/JobSystem.h>
#include "math.h"
#include "FFilamentInstance.h"
#include "FFilamentAsset.h"
#include <math/mat4.h>
#include <math/quat.h>
#include <math/scalar.h>
#include <math/vec3.h>
#include <math/vec4.h>
#include <image/KtxUtility.h>
#include <chrono>
#include <iostream>
#include "Log.h"
#include <android/asset_manager.h>
#include <android/asset_manager_jni.h>
#include <android/native_window_jni.h>
#include <android/log.h>
#include <android/native_activity.h>
using namespace filament;
using namespace filament::math;
using namespace gltfio;
using namespace utils;
using namespace std::chrono;
namespace gltfio
{
MaterialProvider *createUbershaderLoader(filament::Engine *engine);
}
namespace filament
{
class IndirectLight;
class LightManager;
}
namespace gltfio
{
MaterialProvider *createGPUMorphShaderLoader(
const void *opaqueData,
uint64_t opaqueDataSize,
const void *fadeData,
uint64_t fadeDataSize,
Engine *engine);
void decomposeMatrix(const filament::math::mat4f &mat, filament::math::float3 *translation,
filament::math::quatf *rotation, filament::math::float3 *scale);
}
namespace polyvox
{
const double kNearPlane = 0.05; // 5 cm
const double kFarPlane = 1000.0; // 1 km
const float kScaleMultiplier = 100.0f;
const float kAperture = 16.0f;
const float kShutterSpeed = 1.0f / 125.0f;
const float kSensitivity = 100.0f;
filament::math::mat4f composeMatrix(const filament::math::float3 &translation,
const filament::math::quatf &rotation, const filament::math::float3 &scale)
{
float tx = translation[0];
float ty = translation[1];
float tz = translation[2];
float qx = rotation[0];
float qy = rotation[1];
float qz = rotation[2];
float qw = rotation[3];
float sx = scale[0];
float sy = scale[1];
float sz = scale[2];
return filament::math::mat4f(
(1 - 2 * qy * qy - 2 * qz * qz) * sx,
(2 * qx * qy + 2 * qz * qw) * sx,
(2 * qx * qz - 2 * qy * qw) * sx,
0.f,
(2 * qx * qy - 2 * qz * qw) * sy,
(1 - 2 * qx * qx - 2 * qz * qz) * sy,
(2 * qy * qz + 2 * qx * qw) * sy,
0.f,
(2 * qx * qz + 2 * qy * qw) * sz,
(2 * qy * qz - 2 * qx * qw) * sz,
(1 - 2 * qx * qx - 2 * qy * qy) * sz,
0.f, tx, ty, tz, 1.f);
}
FilamentViewer::FilamentViewer(
void *layer,
const char *opaqueShaderPath,
const char *fadeShaderPath,
LoadResource loadResource,
FreeResource freeResource) : _layer(layer),
_loadResource(loadResource),
_freeResource(freeResource),
opaqueShaderResources(nullptr, 0, 0),
fadeShaderResources(nullptr, 0, 0),
_assetBuffer(nullptr, 0, 0)
{
_engine = Engine::create(Engine::Backend::OPENGL);
_renderer = _engine->createRenderer();
_renderer->setDisplayInfo({.refreshRate = 60.0f,
.presentationDeadlineNanos = (uint64_t)0,
.vsyncOffsetNanos = (uint64_t)0});
_scene = _engine->createScene();
Entity camera = EntityManager::get().create();
_mainCamera = _engine->createCamera(camera);
_view = _engine->createView();
_view->setScene(_scene);
_view->setCamera(_mainCamera);
_cameraFocalLength = 28.0f;
_mainCamera->setExposure(kAperture, kShutterSpeed, kSensitivity);
_swapChain = _engine->createSwapChain(_layer);
View::DynamicResolutionOptions options;
options.enabled = true;
// options.homogeneousScaling = homogeneousScaling;
// options.minScale = filament::math::float2{ minScale };
// options.maxScale = filament::math::float2{ maxScale };
// options.sharpness = sharpness;
options.quality = View::QualityLevel::MEDIUM;
;
_view->setDynamicResolutionOptions(options);
View::MultiSampleAntiAliasingOptions multiSampleAntiAliasingOptions;
multiSampleAntiAliasingOptions.enabled = true;
_view->setMultiSampleAntiAliasingOptions(multiSampleAntiAliasingOptions);
_materialProvider = gltfio::createUbershaderLoader(_engine);
EntityManager &em = EntityManager::get();
_ncm = new NameComponentManager(em);
_assetLoader = AssetLoader::create({_engine, _materialProvider, _ncm, &em});
_resourceLoader = new ResourceLoader(
{.engine = _engine, .normalizeSkinningWeights = true, .recomputeBoundingBoxes = true});
manipulator =
Manipulator<float>::Builder().orbitHomePosition(0.0f, 0.0f, 0.05f).targetPosition(0.0f, 0.0f, 0.0f).build(Mode::ORBIT);
_asset = nullptr;
}
FilamentViewer::~FilamentViewer()
{
}
Renderer *FilamentViewer::getRenderer()
{
return _renderer;
}
void FilamentViewer::createSwapChain(void *surface)
{
_swapChain = _engine->createSwapChain(surface);
// Log("swapchain created.");
}
void FilamentViewer::destroySwapChain()
{
if (_swapChain)
{
_engine->destroy(_swapChain);
_swapChain = nullptr;
}
// Log("swapchain destroyed.");
}
void FilamentViewer::applyWeights(float *weights, int count)
{
for (size_t i = 0, c = _asset->getEntityCount(); i != c; ++i)
{
_asset->setMorphWeights(
_asset->getEntities()[i],
weights,
count);
}
}
void FilamentViewer::loadResources(string relativeResourcePath)
{
const char *const *const resourceUris = _asset->getResourceUris();
const size_t resourceUriCount = _asset->getResourceUriCount();
Log("Loading %d resources for asset", resourceUriCount);
for (size_t i = 0; i < resourceUriCount; i++)
{
string uri = relativeResourcePath + string(resourceUris[i]);
ResourceBuffer buf = _loadResource(uri.c_str());
// using FunctionCallback = std::function<void(void*, unsigned int, void *)>;
// auto cb = [&] (void * ptr, unsigned int len, void * misc) {
// };
// FunctionCallback fcb = cb;
ResourceLoader::BufferDescriptor b(
buf.data, buf.size);
_resourceLoader->addResourceData(resourceUris[i], std::move(b));
_freeResource(buf);
}
_resourceLoader->loadResources(_asset);
const Entity *entities = _asset->getEntities();
RenderableManager &rm = _engine->getRenderableManager();
for (int i = 0; i < _asset->getEntityCount(); i++)
{
Entity e = entities[i];
auto inst = rm.getInstance(e);
rm.setCulling(inst, false);
}
_animator = _asset->getAnimator();
_scene->addEntities(_asset->getEntities(), _asset->getEntityCount());
};
void FilamentViewer::releaseSourceAssets()
{
Log("Releasing source data");
_asset->releaseSourceData();
// _freeResource(opaqueShaderResources);
// _freeResource(fadeShaderResources);
}
void FilamentViewer::loadGlb(const char *const uri)
{
Log("Loading GLB at URI %s", uri);
if (_asset)
{
_asset->releaseSourceData();
_resourceLoader->evictResourceData();
_scene->removeEntities(_asset->getEntities(), _asset->getEntityCount());
_assetLoader->destroyAsset(_asset);
}
_asset = nullptr;
_animator = nullptr;
ResourceBuffer rbuf = _loadResource(uri);
_asset = _assetLoader->createAssetFromBinary(
(const uint8_t *)rbuf.data, rbuf.size);
if (!_asset)
{
Log("Unknown error loading GLB asset.");
exit(1);
}
int entityCount = _asset->getEntityCount();
_scene->addEntities(_asset->getEntities(), entityCount);
Log("Added %d entities to scene", entityCount);
_resourceLoader->loadResources(_asset);
_animator = _asset->getAnimator();
const Entity *entities = _asset->getEntities();
RenderableManager &rm = _engine->getRenderableManager();
for (int i = 0; i < _asset->getEntityCount(); i++)
{
Entity e = entities[i];
auto inst = rm.getInstance(e);
rm.setCulling(inst, false);
}
_freeResource(rbuf);
_animator->updateBoneMatrices();
Log("Successfully loaded GLB.");
}
void FilamentViewer::loadGltf(const char *const uri, const char *const relativeResourcePath)
{
Log("Loading GLTF at URI %s", uri);
if (_asset)
{
Log("Asset already exists");
_resourceLoader->evictResourceData();
_scene->removeEntities(_asset->getEntities(), _asset->getEntityCount());
_assetLoader->destroyAsset(_asset);
_freeResource(_assetBuffer);
}
_asset = nullptr;
_animator = nullptr;
_assetBuffer = _loadResource(uri);
// Parse the glTF file and create Filament entities.
Log("Creating asset from JSON");
_asset = _assetLoader->createAssetFromJson((uint8_t *)_assetBuffer.data, _assetBuffer.size);
Log("Created asset from JSON");
if (!_asset)
{
Log("Unable to parse asset");
exit(1);
}
Log("Loading relative resources");
loadResources(string(relativeResourcePath) + string("/"));
Log("Loaded relative resources");
// _asset->releaseSourceData();
Log("Load complete for GLTF at URI %s", uri);
// transformToUnitCube();
}
///
/// Sets the active camera to the GLTF camera specified by [name].
/// Blender export arranges cameras as follows
/// - parent node with global (?) matrix
/// --- child node with "camera" property set to camera node name
/// - camera node
/// We therefore find the first node where the "camera" property is equal to the requested name,
/// then use the parent transform matrix.
///
bool FilamentViewer::setCamera(const char *cameraName)
{
FFilamentAsset *asset = (FFilamentAsset *)_asset;
gltfio::NodeMap &sourceNodes = asset->isInstanced() ? asset->mInstances[0]->nodeMap
: asset->mNodeMap;
Log("Setting camera to node %s", cameraName);
for (auto pair : sourceNodes)
{
cgltf_node const *node = pair.first;
if (strcmp(cameraName, node->name) != 0)
{
continue;
}
Log("Node %s : Matrix : %03f %03f %03f %03f %03f %03f %03f %03f %03f %03f %03f %03f %03f %03f %03f %03f Translation : %03f %03f %03f Rotation %03f %03f %03f %03f Scale %03f %03f %03f",
node->name,
node->matrix[0],
node->matrix[1],
node->matrix[2],
node->matrix[3],
node->matrix[4],
node->matrix[5],
node->matrix[6],
node->matrix[7],
node->matrix[8],
node->matrix[9],
node->matrix[10],
node->matrix[11],
node->matrix[12],
node->matrix[13],
node->matrix[14],
node->matrix[15],
node->translation[0],
node->translation[1],
node->translation[2],
node->rotation[0],
node->rotation[1],
node->rotation[2],
node->rotation[3],
node->scale[0],
node->scale[1],
node->scale[2]
);
mat4f t = mat4f::translation(float3 { node->translation[0],node->translation[1],node->translation[2] });
mat4f r { quatf { node->rotation[3], node->rotation[0], node->rotation[1], node->rotation[2] } };
mat4f transform = t * r;
if (!node->camera)
{
cgltf_node* leaf = node->children[0];
Log("Child 1 trans : %03f %03f %03f rot : %03f %03f %03f %03f ", leaf->translation[0], leaf->translation[1],leaf->translation[2], leaf->rotation[0],leaf->rotation[1],leaf->rotation[2],leaf->rotation[3]);
if (!leaf->camera) {
leaf = leaf->children[0];
Log("Child 2 %03f %03f %03f %03f %03f %03f %03f ", leaf->translation[0], leaf->translation[1],leaf->translation[2], leaf->rotation[0],leaf->rotation[1],leaf->rotation[2],leaf->rotation[3]);
if (!leaf->camera) {
Log("Could not find GLTF camera under node or its ssecond or third child nodes.");
exit(-1);
}
}
Log("Using rotation from leaf node.");
mat4f child_rot { quatf { leaf->rotation[3], leaf->rotation[0], leaf->rotation[1], leaf->rotation[2] } };
transform *= child_rot;
}
Entity cameraEntity = EntityManager::get().create();
Camera *cam = _engine->createCamera(cameraEntity);
const Viewport &vp = _view->getViewport();
const double aspect = (double)vp.width / vp.height;
// todo - pull focal length from gltf node
cam->setLensProjection(_cameraFocalLength, aspect, kNearPlane, kFarPlane);
if (!cam)
{
Log("Couldn't create camera");
}
else
{
_engine->getTransformManager().setTransform(
_engine->getTransformManager().getInstance(cameraEntity), transform
);
_view->setCamera(cam);
return true;
}
}
return false;
}
unique_ptr<vector<string>> FilamentViewer::getAnimationNames()
{
size_t count = _animator->getAnimationCount();
Log("Found %d animations in asset.", count);
unique_ptr<vector<string>> names = make_unique<vector<string>>();
for (size_t i = 0; i < count; i++)
{
names->push_back(_animator->getAnimationName(i));
}
return names;
}
StringList FilamentViewer::getTargetNames(const char *meshName)
{
FFilamentAsset *asset = (FFilamentAsset *)_asset;
NodeMap &sourceNodes = asset->isInstanced() ? asset->mInstances[0]->nodeMap : asset->mNodeMap;
if (sourceNodes.empty())
{
Log("Asset source nodes empty?");
return StringList(nullptr, 0);
}
Log("Fetching morph target names for mesh %s", meshName);
for (auto pair : sourceNodes)
{
cgltf_node const *node = pair.first;
cgltf_mesh const *mesh = node->mesh;
if (mesh)
{
Log("Mesh : %s ", mesh->name);
if (strcmp(meshName, mesh->name) == 0)
{
return StringList((const char **)mesh->target_names, (int)mesh->target_names_count);
}
}
}
return StringList(nullptr, 0);
}
void FilamentViewer::loadSkybox(const char *const skyboxPath, const char *const iblPath, AAssetManager *am)
{
ResourceBuffer skyboxBuffer = _loadResource(skyboxPath);
image::KtxBundle *skyboxBundle =
new image::KtxBundle(static_cast<const uint8_t *>(skyboxBuffer.data), static_cast<uint32_t>(skyboxBuffer.size));
_skyboxTexture = image::ktx::createTexture(_engine, skyboxBundle, false);
_skybox = filament::Skybox::Builder().environment(_skyboxTexture).build(*_engine);
_scene->setSkybox(_skybox);
_freeResource(skyboxBuffer);
Log("Loading IBL from %s", iblPath);
// Load IBL.
ResourceBuffer iblBuffer = _loadResource(iblPath);
image::KtxBundle *iblBundle = new image::KtxBundle(
static_cast<const uint8_t *>(iblBuffer.data), static_cast<uint32_t>(iblBuffer.size));
math::float3 harmonics[9];
iblBundle->getSphericalHarmonics(harmonics);
_iblTexture = image::ktx::createTexture(_engine, iblBundle, false);
_indirectLight = IndirectLight::Builder()
.reflections(_iblTexture)
.irradiance(3, harmonics)
.intensity(30000.0f)
.build(*_engine);
_scene->setIndirectLight(_indirectLight);
_freeResource(iblBuffer);
// Always add a direct light source since it is required for shadowing.
_sun = EntityManager::get().create();
LightManager::Builder(LightManager::Type::DIRECTIONAL)
.color(Color::cct(6500.0f))
.intensity(100000.0f)
.direction(math::float3(0.0f, 1.0f, 0.0f))
.castShadows(true)
.build(*_engine, _sun);
_scene->addEntity(_sun);
Log("Skybox/IBL load complete.");
}
void FilamentViewer::transformToUnitCube()
{
if (!_asset)
{
Log("No asset, cannot transform.");
return;
}
auto &tm = _engine->getTransformManager();
auto aabb = _asset->getBoundingBox();
auto center = aabb.center();
auto halfExtent = aabb.extent();
auto maxExtent = max(halfExtent) * 2;
auto scaleFactor = 2.0f / maxExtent;
auto transform = math::mat4f::scaling(scaleFactor) * math::mat4f::translation(-center);
tm.setTransform(tm.getInstance(_asset->getRoot()), transform);
}
void FilamentViewer::cleanup()
{
_resourceLoader->asyncCancelLoad();
_assetLoader->destroyAsset(_asset);
_materialProvider->destroyMaterials();
AssetLoader::destroy(&_assetLoader);
_freeResource(_assetBuffer);
};
void FilamentViewer::render()
{
if (!_view || !_mainCamera || !_swapChain)
{
// Log("Not ready for rendering");
return;
}
if (morphAnimationBuffer)
{
updateMorphAnimation();
}
if(embeddedAnimationBuffer) {
updateEmbeddedAnimation();
}
math::float3 eye, target, upward;
manipulator->getLookAt(&eye, &target, &upward);
_mainCamera->lookAt(eye, target, upward);
// Render the scene, unless the renderer wants to skip the frame.
if (_renderer->beginFrame(_swapChain))
{
_renderer->render(_view);
_renderer->endFrame();
}
}
void FilamentViewer::updateViewportAndCameraProjection(int width, int height, float contentScaleFactor)
{
if (!_view || !_mainCamera)
{
Log("Skipping camera update, no view or camrea");
return;
}
const uint32_t _width = width * contentScaleFactor;
const uint32_t _height = height * contentScaleFactor;
_view->setViewport({0, 0, _width, _height});
const double aspect = (double)width / height;
_mainCamera->setLensProjection(_cameraFocalLength, aspect, kNearPlane, kFarPlane);
Log("Set viewport to %d %d", _width, _height);
}
void FilamentViewer::animateWeights(float *data, int numWeights, int numFrames, float frameRate)
{
morphAnimationBuffer = std::make_unique<MorphAnimationBuffer>(data, numWeights, numFrames, 1000 / frameRate);
}
void FilamentViewer::updateMorphAnimation()
{
if (morphAnimationBuffer->frameIndex >= morphAnimationBuffer->numFrames)
{
morphAnimationBuffer = nullptr;
return;
}
if (morphAnimationBuffer->frameIndex == -1)
{
morphAnimationBuffer->frameIndex++;
morphAnimationBuffer->startTime = std::chrono::high_resolution_clock::now();
applyWeights(morphAnimationBuffer->frameData, morphAnimationBuffer->numWeights);
}
else
{
std::chrono::duration<double, std::milli> dur = std::chrono::high_resolution_clock::now() - morphAnimationBuffer->startTime;
int frameIndex = dur.count() / morphAnimationBuffer->frameLength;
if (frameIndex != morphAnimationBuffer->frameIndex)
{
morphAnimationBuffer->frameIndex = frameIndex;
applyWeights(morphAnimationBuffer->frameData + (morphAnimationBuffer->frameIndex * morphAnimationBuffer->numWeights), morphAnimationBuffer->numWeights);
}
}
}
void FilamentViewer::playAnimation(int index, bool loop) {
if(index > _animator->getAnimationCount() - 1) {
Log("Asset does not contain an animation at index %d", index);
} else {
embeddedAnimationBuffer = make_unique<EmbeddedAnimationBuffer>(index, _animator->getAnimationDuration(index), loop);
}
}
void FilamentViewer::updateEmbeddedAnimation() {
duration<double> dur = duration_cast<duration<double>>(std::chrono::high_resolution_clock::now() - embeddedAnimationBuffer->lastTime);
float startTime = 0;
if(!embeddedAnimationBuffer->hasStarted) {
embeddedAnimationBuffer->hasStarted = true;
embeddedAnimationBuffer->lastTime = std::chrono::high_resolution_clock::now();
} else if(dur.count() >= embeddedAnimationBuffer->duration) {
if(embeddedAnimationBuffer->loop) {
embeddedAnimationBuffer->lastTime = std::chrono::high_resolution_clock::now();
} else {
embeddedAnimationBuffer = nullptr;
return;
}
} else {
startTime = dur.count();
}
_animator->applyAnimation(embeddedAnimationBuffer->animationIndex, startTime);
_animator->updateBoneMatrices();
}
}
// //
// //if(morphAnimationBuffer.frameIndex >= morphAnimationBuffer.numFrames) {
// // this.morphAnimationBuffer = null;
// // return;
// //}
// //
// //if(morphAnimationBuffer.frameIndex == -1) {
// // applyWeights(morphAnimationBuffer->frameData, morphAnimationBuffer->numWeights);
// // morphAnimationBuffer->frameIndex++;
// // morphAnimationBuffer->lastTime = std::chrono::high_resolution_clock::now();
// //} else {
// // duration dur = std::chrono::high_resolution_clock::now() - morphAnimationBuffer->lastTime;
// // float msElapsed = dur.count();
// // if(msElapsed > morphAnimationBuffer->frameLength) {
// // frameIndex++;
// // applyWeights(frameData + (frameIndex * numWeights), numWeights);
// // morphAnimationBuffer->lastTime = std::chrono::high_resolution_clock::now();
// // }
// //}
// void FilamentViewer::createMorpher(const char* meshName, int* primitives, int numPrimitives) {
// // morphHelper = new gltfio::GPUMorphHelper((FFilamentAsset*)_asset, meshName, primitives, numPrimitives);
// // morphHelper = new gltfio::CPUMorpher(((FFilamentAsset)*_asset, (FFilamentInstance*)_asset));
// }
// void FilamentViewer::animateBones() {
// }
// Entity entity = _asset->getFirstEntityByName("CC_Base_JawRoot");
// if(!entity) {
// return;
// }
// TransformManager& transformManager = _engine->getTransformManager();
// TransformManager::Instance node = transformManager.getInstance( entity);
// mat4f xform = transformManager.getTransform(node);
// float3 scale;
// quatf rotation;
// float3 translation;
// decomposeMatrix(xform, &translation, &rotation, &scale);
// // const quatf srcQuat { weights[0] * 0.9238,0,weights[0] * 0.3826, 0 };
// // float3 { scale[0] * (1.0f - weights[0]), scale[1] * (1.0f - weights[1]), scale[2] * (1.0f - weights[2]) }
// // xform = composeMatrix(translation + float3 { weights[0], weights[1], weights[2] }, rotation, scale );
// transformManager.setTransform(node, xform);
// }
// void FilamentViewer::updateAnimation(AnimationBuffer animation, std::function<void(int)> callback) {
// if(morphAnimationBuffer.frameIndex >= animation.numFrames) {
// this.animation = null;
// return;
// }
// if(animation.frameIndex == -1) {
// animation->frameIndex++;
// animation->lastTime = std::chrono::high_resolution_clock::now();
// callback(); // applyWeights(morphAnimationBuffer->frameData, morphAnimationBuffer->numWeights);
// } else {
// duration dur = std::chrono::high_resolution_clock::now() - morphAnimationBuffer->lastTime;
// float msElapsed = dur.count();
// if(msElapsed > animation->frameLength) {
// animation->frameIndex++;
// animation->lastTime = std::chrono::high_resolution_clock::now();
// callback(); // applyWeights(frameData + (frameIndex * numWeights), numWeights);
// }
// }
// }