Files
cup_edit/thermion_dart/test/helpers.dart
Nick Fisher 0759590f4c test fix
2025-04-16 18:00:17 +08:00

653 lines
22 KiB
Dart

// ignore_for_file: unused_local_variable
import 'dart:ffi';
import 'dart:io';
import 'dart:math';
import 'package:image/image.dart' as img;
import 'dart:typed_data';
import 'package:ffi/ffi.dart';
import 'package:image/image.dart';
import 'package:thermion_dart/src/filament/src/layers.dart';
import 'package:thermion_dart/src/swift/swift_bindings.g.dart';
import 'package:thermion_dart/src/utils/src/dart_resources.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/callbacks.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_filament_app.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_render_target.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_swapchain.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/ffi_view.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/thermion_dart.g.dart';
import 'package:thermion_dart/src/viewer/src/ffi/src/thermion_viewer_ffi.dart';
import 'package:thermion_dart/src/viewer/src/ffi/thermion_viewer_ffi.dart';
import 'package:thermion_dart/thermion_dart.dart';
import 'package:vector_math/vector_math_64.dart';
import 'package:path/path.dart' as p;
Color kWhite = ColorFloat32(4)..setRgba(1.0, 1.0, 1.0, 1.0);
Color kRed = ColorFloat32(4)..setRgba(1.0, 0.0, 0.0, 1.0);
Color kGreen = ColorFloat32(4)..setRgba(0.0, 1.0, 0.0, 1.0);
Color kBlue = ColorFloat32(4)..setRgba(0.0, 0.0, 1.0, 1.0);
/// Test files are run in a variety of ways, find this package root in all.
///
/// Test files can be run from source from any working directory. The Dart SDK
/// `tools/test.py` runs them from the root of the SDK for example.
///
/// Test files can be run from dill from the root of package. `package:test`
/// does this.
Uri findPackageRoot(String packageName) {
final script = Platform.script;
final fileName = script.name;
if (fileName.contains('_test')) {
// We're likely running from source.
var directory = script.resolve('.');
while (true) {
final dirName = directory.name;
if (dirName == packageName) {
return directory;
}
final parent = directory.resolve('..');
if (parent == directory) break;
directory = parent;
}
} else if (fileName.endsWith('.dill')) {
final cwd = Directory.current.uri;
final dirName = cwd.name;
if (dirName == packageName) {
return cwd;
}
}
throw StateError("Could not find package root for package '$packageName'. "
'Tried finding the package root via Platform.script '
"'${Platform.script.toFilePath()}' and Directory.current "
"'${Directory.current.uri.toFilePath()}'.");
}
extension on Uri {
String get name => pathSegments.where((e) => e != '').last;
}
Future<Uint8List> savePixelBufferToBmp(
Uint8List pixelBuffer, int width, int height, String outputPath,
{bool hasAlpha = true, bool isFloat = true}) async {
var data = await pixelBufferToBmp(pixelBuffer, width, height,
hasAlpha: hasAlpha, isFloat: isFloat);
File(outputPath).writeAsBytesSync(data);
print("Wrote bitmap to ${outputPath}");
return data;
}
Future<Uint8List> savePixelBufferToPng(
Uint8List pixelBuffer, int width, int height, String outputPath) async {
var data = await pixelBufferToPng(pixelBuffer, width, height);
File(outputPath).writeAsBytesSync(data);
print("Wrote bitmap to ${outputPath}");
return data;
}
class TestHelper {
late FFISwapChain swapChain;
late Directory outDir;
late String testDir;
TestHelper(String dir) {
final packageUri = findPackageRoot('thermion_dart').toFilePath();
testDir = Directory("${packageUri}test").path;
outDir = Directory("$testDir/output/${dir}");
outDir.createSync(recursive: true);
if (Platform.isMacOS) {
DynamicLibrary.open('${testDir}/libThermionTextureSwift.dylib');
}
}
///
///
///
Future<Texture> createTextureFromImage(TestHelper testHelper) async {
final image = await FilamentApp.instance!.decodeImage(
File("${testHelper.testDir}/assets/cube_texture2_512x512.png")
.readAsBytesSync());
final texture = await FilamentApp.instance!
.createTexture(await image.getWidth(), await image.getHeight());
await texture.setLinearImage(
image, PixelDataFormat.RGBA, PixelDataType.FLOAT);
return texture;
}
///
///
///
Future createView(FFISwapChain swapChain,
{TextureFormat textureFormat = TextureFormat.RGBA32F}) async {
final view = await FilamentApp.instance!.createView() as FFIView;
await view.setFrustumCullingEnabled(false);
await view.setPostProcessing(false);
await view.setViewport(512, 512);
View_setBlendMode(view.view, TBlendMode.OPAQUE);
final color = await FilamentApp.instance!.createTexture(512, 512,
flags: {
TextureUsage.TEXTURE_USAGE_COLOR_ATTACHMENT,
TextureUsage.TEXTURE_USAGE_SAMPLEABLE,
TextureUsage.TEXTURE_USAGE_BLIT_SRC
},
textureFormat: textureFormat);
await view.setRenderTarget(await FilamentApp.instance!.createRenderTarget(
512,
512,
color: color,
) as FFIRenderTarget);
await FilamentApp.instance!.register(swapChain, view);
return view;
}
Future<ThermionAsset> createCube(ThermionViewer viewer) async {
var materialInstance = await FilamentApp.instance!
.createUbershaderMaterialInstance(unlit: true);
await materialInstance.setParameterFloat4("baseColorFactor", 1, 1, 1, 0);
final cubeGeometry = GeometryHelper.cube(flipUvs: true);
var asset = await viewer
.createGeometry(cubeGeometry, materialInstances: [materialInstance]);
return asset;
}
Future withCube(
ThermionViewer viewer, Future Function(ThermionAsset cube) fn) async {
var materialInstance = await FilamentApp.instance!
.createUbershaderMaterialInstance(unlit: true);
await materialInstance.setParameterFloat4("baseColorFactor", 1, 1, 1, 0);
final cubeGeometry = GeometryHelper.cube(flipUvs: true);
var asset = await viewer
.createGeometry(cubeGeometry, materialInstances: [materialInstance]);
print(cubeGeometry);
await fn(asset);
await viewer.destroyAsset(asset);
}
///
///
///
Future<Map<View, Uint8List>> capture(View? view, String? outputFilename,
{Future Function(View view)? beforeRender,
SwapChain? swapChain,
PixelDataFormat pixelDataFormat = PixelDataFormat.RGBA,
PixelDataType pixelDataType = PixelDataType.FLOAT}) async {
swapChain ??= this.swapChain;
var pixelBuffers = await FilamentApp.instance!.capture(swapChain,
view: view,
beforeRender: beforeRender,
pixelDataFormat: pixelDataFormat,
pixelDataType: pixelDataType);
var retval = <View, Uint8List>{};
int i = 0;
for (final (view, pixelBuffer) in pixelBuffers) {
var vp = await view.getViewport();
if (outputFilename != null) {
var outPath = p.join(outDir.path, "${outputFilename}_view${i}.bmp");
await savePixelBufferToBmp(pixelBuffer, vp.width, vp.height, outPath,
isFloat: pixelDataType == PixelDataType.FLOAT);
}
i++;
retval[view] = pixelBuffer;
}
return retval;
}
///
///
///
Future<ThermionTextureSwift> createTexture(int width, int height,
{bool depth = false}) async {
final object = ThermionTextureSwift.new$();
object.initWithWidth_height_isDepth_(width, height, depth);
return object;
}
Future setup() async {
final resourceLoader = calloc<ResourceLoaderWrapper>(1);
var loadToOut = NativeCallable<
Void Function(Pointer<Char>,
Pointer<ResourceBuffer>)>.listener(DartResourceLoader.loadResource);
resourceLoader.ref.loadToOut = loadToOut.nativeFunction;
var freeResource = NativeCallable<Void Function(ResourceBuffer)>.listener(
DartResourceLoader.freeResource);
resourceLoader.ref.freeResource = freeResource.nativeFunction;
await FFIFilamentApp.create();
}
Future createViewer(
{img.Color? bg,
Vector3? cameraPosition,
({int width, int height}) viewportDimensions = (width: 512, height: 512),
bool postProcessing = false,
bool addSkybox = false,
bool createRenderTarget = false}) async {
cameraPosition ??= Vector3(0, 5, 5);
swapChain = await FilamentApp.instance!.createHeadlessSwapChain(
viewportDimensions.width, viewportDimensions.height) as FFISwapChain;
FFIRenderTarget? renderTarget;
if (createRenderTarget) {
var metalColorTexture = await createTexture(
viewportDimensions.width, viewportDimensions.height);
var metalDepthTexture = await createTexture(
viewportDimensions.width, viewportDimensions.height,
depth: true);
var color = await FilamentApp.instance!
.createTexture(viewportDimensions.width, viewportDimensions.height,
flags: {
TextureUsage.TEXTURE_USAGE_BLIT_SRC,
TextureUsage.TEXTURE_USAGE_COLOR_ATTACHMENT,
TextureUsage.TEXTURE_USAGE_SAMPLEABLE
},
textureFormat: TextureFormat.RGB32F,
importedTextureHandle: metalColorTexture.metalTextureAddress);
var width = await color.getWidth();
var height = await color.getHeight();
var depth = await FilamentApp.instance!
.createTexture(viewportDimensions.width, viewportDimensions.height,
flags: {
TextureUsage.TEXTURE_USAGE_BLIT_SRC,
TextureUsage.TEXTURE_USAGE_DEPTH_ATTACHMENT,
TextureUsage.TEXTURE_USAGE_SAMPLEABLE,
},
textureFormat: TextureFormat.DEPTH32F,
importedTextureHandle: metalDepthTexture.metalTextureAddress);
renderTarget = await FilamentApp.instance!.createRenderTarget(
viewportDimensions.width, viewportDimensions.height,
color: color, depth: depth) as FFIRenderTarget;
}
var viewer = ThermionViewerFFI(
loadAssetFromUri: (path) async =>
File(path.replaceAll("file://", "")).readAsBytesSync());
await viewer.initialized;
await FilamentApp.instance!.register(swapChain, viewer.view);
if (renderTarget != null) {
await viewer.view.setRenderTarget(renderTarget);
}
await viewer.view
.setViewport(viewportDimensions.width, viewportDimensions.height);
if (addSkybox) {
await viewer
.loadSkybox("file://${testDir}/assets/default_env_skybox.ktx");
}
if (bg != null) {
await viewer.setBackgroundColor(
bg.r.toDouble(), bg.g.toDouble(), bg.b.toDouble(), bg.a.toDouble());
}
final camera = await viewer.getActiveCamera();
await camera.setLensProjection(
near: kNear, far: kFar, aspect: 1.0, focalLength: kFocalLength);
await camera.lookAt(cameraPosition);
await viewer.setPostProcessing(postProcessing);
await viewer.setToneMapping(ToneMapper.LINEAR);
return viewer;
}
///
///
///
Future withViewer(
Future Function(ThermionViewer viewer) fn, {
img.Color? bg,
Vector3? cameraPosition,
({int width, int height}) viewportDimensions = (width: 512, height: 512),
bool postProcessing = false,
bool addSkybox = false,
bool createRenderTarget = false,
}) async {
final viewer = await createViewer(
bg: bg,
cameraPosition: cameraPosition,
viewportDimensions: viewportDimensions,
postProcessing: postProcessing,
addSkybox: addSkybox,
createRenderTarget: createRenderTarget);
await fn.call(viewer);
await viewer.dispose();
}
}
Uint8List poissonBlend(List<Uint8List> textures, int width, int height) {
final int numTextures = textures.length;
final int size = width * height;
// Initialize the result
List<Vector4> result = List.generate(size, (_) => Vector4(0, 0, 0, 0));
List<bool> validPixel = List.generate(size, (_) => false);
// Compute gradients and perform simplified Poisson blending
for (int y = 1; y < height - 1; y++) {
for (int x = 1; x < width - 1; x++) {
int index = y * width + x;
Vector4 gradX = Vector4(0, 0, 0, 0);
Vector4 gradY = Vector4(0, 0, 0, 0);
bool hasValidData = false;
for (int t = 0; t < numTextures; t++) {
int i = index * 4;
if (textures[t][i] == 0 &&
textures[t][i + 1] == 0 &&
textures[t][i + 2] == 0 &&
textures[t][i + 3] == 0) {
continue; // Skip this texture if the pixel is empty
}
hasValidData = true;
int iLeft = (y * width + x - 1) * 4;
int iRight = (y * width + x + 1) * 4;
int iUp = ((y - 1) * width + x) * 4;
int iDown = ((y + 1) * width + x) * 4;
Vector4 gx = Vector4(
(textures[t][iRight] - textures[t][iLeft]) / 2,
(textures[t][iRight + 1] - textures[t][iLeft + 1]) / 2,
(textures[t][iRight + 2] - textures[t][iLeft + 2]) / 2,
(textures[t][iRight + 3] - textures[t][iLeft + 3]) / 2);
Vector4 gy = Vector4(
(textures[t][iDown] - textures[t][iUp]) / 2,
(textures[t][iDown + 1] - textures[t][iUp + 1]) / 2,
(textures[t][iDown + 2] - textures[t][iUp + 2]) / 2,
(textures[t][iDown + 3] - textures[t][iUp + 3]) / 2);
// Select the gradient with larger magnitude
double magX = gx.r * gx.r + gx.g * gx.g + gx.b * gx.b + gx.a * gx.a;
double magY = gy.r * gy.r + gy.g * gy.g + gy.b * gy.b + gy.a * gy.a;
if (magX >
gradX.r * gradX.r +
gradX.g * gradX.g +
gradX.b * gradX.b +
gradX.a * gradX.a) {
gradX = gx;
}
if (magY >
gradY.r * gradY.r +
gradY.g * gradY.g +
gradY.b * gradY.b +
gradY.a * gradY.a) {
gradY = gy;
}
}
if (hasValidData) {
validPixel[index] = true;
// Simplified Poisson equation solver (Jacobi iteration)
result[index].r = (result[index - 1].r +
result[index + 1].r +
result[index - width].r +
result[index + width].r +
gradX.r -
gradY.r) /
4;
result[index].g = (result[index - 1].g +
result[index + 1].g +
result[index - width].g +
result[index + width].g +
gradX.g -
gradY.g) /
4;
result[index].b = (result[index - 1].b +
result[index + 1].b +
result[index - width].b +
result[index + width].b +
gradX.b -
gradY.b) /
4;
result[index].a = (result[index - 1].a +
result[index + 1].a +
result[index - width].a +
result[index + width].a +
gradX.a -
gradY.a) /
4;
}
}
}
// Fill in gaps and normalize
Uint8List finalResult = Uint8List(size * 4);
for (int i = 0; i < size; i++) {
if (validPixel[i]) {
finalResult[i * 4] = (result[i].r.clamp(0, 255)).toInt();
finalResult[i * 4 + 1] = (result[i].g.clamp(0, 255)).toInt();
finalResult[i * 4 + 2] = (result[i].b.clamp(0, 255)).toInt();
finalResult[i * 4 + 3] = (result[i].a.clamp(0, 255)).toInt();
} else {
// For invalid pixels, try to interpolate from neighbors
List<int> validNeighbors = [];
if (i > width && validPixel[i - width]) validNeighbors.add(i - width);
if (i < size - width && validPixel[i + width])
validNeighbors.add(i + width);
if (i % width > 0 && validPixel[i - 1]) validNeighbors.add(i - 1);
if (i % width < width - 1 && validPixel[i + 1]) validNeighbors.add(i + 1);
if (validNeighbors.isNotEmpty) {
double r = 0, g = 0, b = 0, a = 0;
for (int neighbor in validNeighbors) {
r += result[neighbor].r;
g += result[neighbor].g;
b += result[neighbor].b;
a += result[neighbor].a;
}
finalResult[i * 4] = (r / validNeighbors.length).clamp(0, 255).toInt();
finalResult[i * 4 + 1] =
(g / validNeighbors.length).clamp(0, 255).toInt();
finalResult[i * 4 + 2] =
(b / validNeighbors.length).clamp(0, 255).toInt();
finalResult[i * 4 + 3] =
(a / validNeighbors.length).clamp(0, 255).toInt();
} else {
// If no valid neighbors, set to transparent black
finalResult[i * 4] = 0;
finalResult[i * 4 + 1] = 0;
finalResult[i * 4 + 2] = 0;
finalResult[i * 4 + 3] = 0;
}
}
}
return finalResult;
}
Uint8List medianImages(List<Uint8List> images) {
if (images.isEmpty) {
return Uint8List(0);
}
int imageSize = images[0].length;
Uint8List result = Uint8List(imageSize);
int numImages = images.length;
for (int i = 0; i < imageSize; i++) {
List<int> pixelValues = [];
for (int j = 0; j < numImages; j++) {
pixelValues.add(images[j][i]);
}
pixelValues.sort();
int medianIndex = numImages ~/ 2;
result[i] = pixelValues[medianIndex];
}
return result;
}
Uint8List maxIntensityProjection(
List<Uint8List> textures, int width, int height) {
final int numTextures = textures.length;
final int size = width * height;
// Initialize the result with the first texture
Uint8List result = Uint8List.fromList(textures[0]);
// Iterate through all textures and perform max intensity projection
for (int t = 1; t < numTextures; t++) {
for (int i = 0; i < size * 4; i += 4) {
// Calculate intensity (using luminance formula)
double intensityCurrent =
0.299 * result[i] + 0.587 * result[i + 1] + 0.114 * result[i + 2];
double intensityNew = 0.299 * textures[t][i] +
0.587 * textures[t][i + 1] +
0.114 * textures[t][i + 2];
// If the new texture has higher intensity, use its values
if (intensityNew > intensityCurrent) {
result[i] = textures[t][i]; // R
result[i + 1] = textures[t][i + 1]; // G
result[i + 2] = textures[t][i + 2]; // B
result[i + 3] = textures[t][i + 3]; // A
}
}
}
return result;
}
// Helper function to blend MIP result with Poisson blending
Uint8List blendMIPWithPoisson(
Uint8List mipResult, Uint8List poissonResult, double alpha) {
final int size = mipResult.length;
Uint8List blendedResult = Uint8List(size);
for (int i = 0; i < size; i++) {
blendedResult[i] = (mipResult[i] * (1 - alpha) + poissonResult[i] * alpha)
.round()
.clamp(0, 255);
}
return blendedResult;
}
Uint8List medianBlending(List<Uint8List> textures, int width, int height) {
final int numTextures = textures.length;
final int size = width * height;
Uint8List result = Uint8List(size * 4);
for (int i = 0; i < size; i++) {
List<int> values = [];
for (int t = 0; t < numTextures; t++) {
if (textures[t][i * 4] != 0 ||
textures[t][i * 4 + 1] != 0 ||
textures[t][i * 4 + 2] != 0 ||
textures[t][i * 4 + 3] != 0) {
values.addAll(textures[t].sublist(i * 4, i * 4 + 4));
}
}
if (values.isNotEmpty) {
values.sort();
result[i] = values[values.length ~/ 2];
} else {
result[i] = 0; // If no valid data, set to transparent
}
}
return result;
}
(Uint8List, int, int) readBmpToPixelBuffer(String filePath) {
final File file = File(filePath);
if (!file.existsSync()) {
throw FileSystemException('File not found', filePath);
}
// Read the file bytes
final Uint8List fileBytes = file.readAsBytesSync();
// Decode the image using package:image
final img.Image? decodedImage = img.decodeImage(fileBytes);
if (decodedImage == null) {
throw FormatException('Failed to decode image at $filePath');
}
// Convert to RGBA format (matching the format used in the comparison function)
final img.Image rgbaImage =
decodedImage.convert(format: img.Format.uint8, numChannels: 3);
rgbaImage.remapChannels(ChannelOrder.bgr);
// Get dimensions
final int width = rgbaImage.width;
final int height = rgbaImage.height;
// Convert to Uint8List
final Uint8List pixelBuffer = Uint8List.fromList(rgbaImage.toUint8List());
if (pixelBuffer.length != width * height * 3) {
throw Exception("MISMATCH");
}
return (pixelBuffer, width, height);
}
Uint8List comparePixelBuffers(
Uint8List buffer1, Uint8List buffer2, int width, int height,
{int threshold = 0}) {
// Validate inputs
if (buffer1.length != buffer2.length) {
throw ArgumentError(
'Buffer sizes do not match: ${buffer1.length} vs ${buffer2.length}');
}
if (buffer1.length < width * height * 3) {
throw ArgumentError(
'Buffer size is too small for the specified dimensions');
}
// Create result buffer
final Uint8List result = Uint8List(buffer1.length);
// Process each pixel
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
final int index = (y * width + x) * 3;
if (buffer1[index + 2] != 0) {
print(
"buffer 1 red ${buffer1[index + 2]} buffer 2 ${buffer2[index + 2]}");
}
// Compare RGB values
final bool isDifferent =
(buffer1[index] - buffer2[index]).abs() > threshold ||
(buffer1[index + 1] - buffer2[index + 1]).abs() > threshold ||
(buffer1[index + 2] - buffer2[index + 2]).abs() > threshold;
if (isDifferent) {
// result[index] = (buffer1[index] - buffer2[index]).abs(); // R
// result[index + 1] = (buffer1[index + 1] - buffer2[index + 1]).abs(); //G
// result[index + 2] = (buffer1[index + 2] - buffer2[index + 2]).abs(); //
// Different pixels - white
result[index] = 255; // R
result[index + 1] = 255; // G
result[index + 2] = 255; // B
}
}
}
return result;
}