add macOS implementation
This commit is contained in:
623
macos/include/math/TVecHelpers.h
Normal file
623
macos/include/math/TVecHelpers.h
Normal file
@@ -0,0 +1,623 @@
|
||||
/*
|
||||
* Copyright 2013 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef TNT_MATH_TVECHELPERS_H
|
||||
#define TNT_MATH_TVECHELPERS_H
|
||||
|
||||
#include <math/compiler.h>
|
||||
|
||||
#include <cmath> // for std:: namespace
|
||||
|
||||
#include <stdint.h>
|
||||
#include <sys/types.h>
|
||||
|
||||
namespace filament::math::details {
|
||||
|
||||
template<typename U>
|
||||
inline constexpr U min(U a, U b) noexcept {
|
||||
return a < b ? a : b;
|
||||
}
|
||||
|
||||
template<typename U>
|
||||
inline constexpr U max(U a, U b) noexcept {
|
||||
return a > b ? a : b;
|
||||
}
|
||||
|
||||
template<typename T, typename U>
|
||||
struct arithmetic_result {
|
||||
using type = decltype(std::declval<T>() + std::declval<U>());
|
||||
};
|
||||
|
||||
template<typename T, typename U>
|
||||
using arithmetic_result_t = typename arithmetic_result<T, U>::type;
|
||||
|
||||
template<typename A, typename B = int, typename C = int, typename D = int>
|
||||
using enable_if_arithmetic_t = std::enable_if_t<
|
||||
is_arithmetic<A>::value &&
|
||||
is_arithmetic<B>::value &&
|
||||
is_arithmetic<C>::value &&
|
||||
is_arithmetic<D>::value>;
|
||||
|
||||
/*
|
||||
* No user serviceable parts here.
|
||||
*
|
||||
* Don't use this file directly, instead include math/vec{2|3|4}.h
|
||||
*/
|
||||
|
||||
/*
|
||||
* TVec{Add|Product}Operators implements basic arithmetic and basic compound assignments
|
||||
* operators on a vector of type BASE<T>.
|
||||
*
|
||||
* BASE only needs to implement operator[] and size().
|
||||
* By simply inheriting from TVec{Add|Product}Operators<BASE, T> BASE will automatically
|
||||
* get all the functionality here.
|
||||
*/
|
||||
|
||||
template<template<typename T> class VECTOR, typename T>
|
||||
class TVecAddOperators {
|
||||
public:
|
||||
/* compound assignment from a another vector of the same size but different
|
||||
* element type.
|
||||
*/
|
||||
template<typename U>
|
||||
constexpr VECTOR<T>& operator+=(const VECTOR<U>& v) {
|
||||
VECTOR<T>& lhs = static_cast<VECTOR<T>&>(*this);
|
||||
for (size_t i = 0; i < lhs.size(); i++) {
|
||||
lhs[i] += v[i];
|
||||
}
|
||||
return lhs;
|
||||
}
|
||||
|
||||
template<typename U, typename = enable_if_arithmetic_t<U>>
|
||||
constexpr VECTOR<T>& operator+=(U v) {
|
||||
return operator+=(VECTOR<U>(v));
|
||||
}
|
||||
|
||||
template<typename U>
|
||||
constexpr VECTOR<T>& operator-=(const VECTOR<U>& v) {
|
||||
VECTOR<T>& lhs = static_cast<VECTOR<T>&>(*this);
|
||||
for (size_t i = 0; i < lhs.size(); i++) {
|
||||
lhs[i] -= v[i];
|
||||
}
|
||||
return lhs;
|
||||
}
|
||||
|
||||
template<typename U, typename = enable_if_arithmetic_t<U>>
|
||||
constexpr VECTOR<T>& operator-=(U v) {
|
||||
return operator-=(VECTOR<U>(v));
|
||||
}
|
||||
|
||||
private:
|
||||
/*
|
||||
* NOTE: the functions below ARE NOT member methods. They are friend functions
|
||||
* with they definition inlined with their declaration. This makes these
|
||||
* template functions available to the compiler when (and only when) this class
|
||||
* is instantiated, at which point they're only templated on the 2nd parameter
|
||||
* (the first one, BASE<T> being known).
|
||||
*/
|
||||
|
||||
template<typename U>
|
||||
friend inline constexpr
|
||||
VECTOR<arithmetic_result_t<T, U>> MATH_PURE operator+(const VECTOR<T>& lv, const VECTOR<U>& rv) {
|
||||
VECTOR<arithmetic_result_t<T, U>> res(lv);
|
||||
res += rv;
|
||||
return res;
|
||||
}
|
||||
|
||||
template<typename U, typename = enable_if_arithmetic_t<U>>
|
||||
friend inline constexpr
|
||||
VECTOR<arithmetic_result_t<T, U>> MATH_PURE operator+(const VECTOR<T>& lv, U rv) {
|
||||
return lv + VECTOR<U>(rv);
|
||||
}
|
||||
|
||||
template<typename U, typename = enable_if_arithmetic_t<U>>
|
||||
friend inline constexpr
|
||||
VECTOR<arithmetic_result_t<T, U>> MATH_PURE operator+(U lv, const VECTOR<T>& rv) {
|
||||
return VECTOR<U>(lv) + rv;
|
||||
}
|
||||
|
||||
template<typename U>
|
||||
friend inline constexpr
|
||||
VECTOR<arithmetic_result_t<T, U>> MATH_PURE operator-(const VECTOR<T>& lv, const VECTOR<U>& rv) {
|
||||
VECTOR<arithmetic_result_t<T, U>> res(lv);
|
||||
res -= rv;
|
||||
return res;
|
||||
}
|
||||
|
||||
template<typename U, typename = enable_if_arithmetic_t<U>>
|
||||
friend inline constexpr
|
||||
VECTOR<arithmetic_result_t<T, U>> MATH_PURE operator-(const VECTOR<T>& lv, U rv) {
|
||||
return lv - VECTOR<U>(rv);
|
||||
}
|
||||
|
||||
template<typename U, typename = enable_if_arithmetic_t<U>>
|
||||
friend inline constexpr
|
||||
VECTOR<arithmetic_result_t<T, U>> MATH_PURE operator-(U lv, const VECTOR<T>& rv) {
|
||||
return VECTOR<U>(lv) - rv;
|
||||
}
|
||||
};
|
||||
|
||||
template<template<typename T> class VECTOR, typename T>
|
||||
class TVecProductOperators {
|
||||
public:
|
||||
/* compound assignment from a another vector of the same size but different
|
||||
* element type.
|
||||
*/
|
||||
template<typename U>
|
||||
constexpr VECTOR<T>& operator*=(const VECTOR<U>& v) {
|
||||
VECTOR<T>& lhs = static_cast<VECTOR<T>&>(*this);
|
||||
for (size_t i = 0; i < lhs.size(); i++) {
|
||||
lhs[i] *= v[i];
|
||||
}
|
||||
return lhs;
|
||||
}
|
||||
|
||||
template<typename U, typename = enable_if_arithmetic_t<U>>
|
||||
constexpr VECTOR<T>& operator*=(U v) {
|
||||
return operator*=(VECTOR<U>(v));
|
||||
}
|
||||
|
||||
template<typename U>
|
||||
constexpr VECTOR<T>& operator/=(const VECTOR<U>& v) {
|
||||
VECTOR<T>& lhs = static_cast<VECTOR<T>&>(*this);
|
||||
for (size_t i = 0; i < lhs.size(); i++) {
|
||||
lhs[i] /= v[i];
|
||||
}
|
||||
return lhs;
|
||||
}
|
||||
|
||||
template<typename U, typename = enable_if_arithmetic_t<U>>
|
||||
constexpr VECTOR<T>& operator/=(U v) {
|
||||
return operator/=(VECTOR<U>(v));
|
||||
}
|
||||
|
||||
private:
|
||||
/*
|
||||
* NOTE: the functions below ARE NOT member methods. They are friend functions
|
||||
* with they definition inlined with their declaration. This makes these
|
||||
* template functions available to the compiler when (and only when) this class
|
||||
* is instantiated, at which point they're only templated on the 2nd parameter
|
||||
* (the first one, BASE<T> being known).
|
||||
*/
|
||||
|
||||
template<typename U>
|
||||
friend inline constexpr
|
||||
VECTOR<arithmetic_result_t<T, U>> MATH_PURE operator*(const VECTOR<T>& lv, const VECTOR<U>& rv) {
|
||||
VECTOR<arithmetic_result_t<T, U>> res(lv);
|
||||
res *= rv;
|
||||
return res;
|
||||
}
|
||||
|
||||
template<typename U, typename = enable_if_arithmetic_t<U>>
|
||||
friend inline constexpr
|
||||
VECTOR<arithmetic_result_t<T, U>> MATH_PURE operator*(const VECTOR<T>& lv, U rv) {
|
||||
return lv * VECTOR<U>(rv);
|
||||
}
|
||||
|
||||
template<typename U, typename = enable_if_arithmetic_t<U>>
|
||||
friend inline constexpr
|
||||
VECTOR<arithmetic_result_t<T, U>> MATH_PURE operator*(U lv, const VECTOR<T>& rv) {
|
||||
return VECTOR<U>(lv) * rv;
|
||||
}
|
||||
|
||||
template<typename U>
|
||||
friend inline constexpr
|
||||
VECTOR<arithmetic_result_t<T, U>> MATH_PURE operator/(const VECTOR<T>& lv, const VECTOR<U>& rv) {
|
||||
VECTOR<arithmetic_result_t<T, U>> res(lv);
|
||||
res /= rv;
|
||||
return res;
|
||||
}
|
||||
|
||||
template<typename U, typename = enable_if_arithmetic_t<U>>
|
||||
friend inline constexpr
|
||||
VECTOR<arithmetic_result_t<T, U>> MATH_PURE operator/(const VECTOR<T>& lv, U rv) {
|
||||
return lv / VECTOR<U>(rv);
|
||||
}
|
||||
|
||||
template<typename U, typename = enable_if_arithmetic_t<U>>
|
||||
friend inline constexpr
|
||||
VECTOR<arithmetic_result_t<T, U>> MATH_PURE operator/(U lv, const VECTOR<T>& rv) {
|
||||
return VECTOR<U>(lv) / rv;
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
* TVecUnaryOperators implements unary operators on a vector of type BASE<T>.
|
||||
*
|
||||
* BASE only needs to implement operator[] and size().
|
||||
* By simply inheriting from TVecUnaryOperators<BASE, T> BASE will automatically
|
||||
* get all the functionality here.
|
||||
*
|
||||
* These operators are implemented as friend functions of TVecUnaryOperators<BASE, T>
|
||||
*/
|
||||
template<template<typename T> class VECTOR, typename T>
|
||||
class TVecUnaryOperators {
|
||||
public:
|
||||
constexpr VECTOR<T> operator-() const {
|
||||
VECTOR<T> r{};
|
||||
VECTOR<T> const& rv(static_cast<VECTOR<T> const&>(*this));
|
||||
for (size_t i = 0; i < r.size(); i++) {
|
||||
r[i] = -rv[i];
|
||||
}
|
||||
return r;
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
* TVecComparisonOperators implements relational/comparison operators
|
||||
* on a vector of type BASE<T>.
|
||||
*
|
||||
* BASE only needs to implement operator[] and size().
|
||||
* By simply inheriting from TVecComparisonOperators<BASE, T> BASE will automatically
|
||||
* get all the functionality here.
|
||||
*/
|
||||
template<template<typename T> class VECTOR, typename T>
|
||||
class TVecComparisonOperators {
|
||||
private:
|
||||
/*
|
||||
* NOTE: the functions below ARE NOT member methods. They are friend functions
|
||||
* with they definition inlined with their declaration. This makes these
|
||||
* template functions available to the compiler when (and only when) this class
|
||||
* is instantiated, at which point they're only templated on the 2nd parameter
|
||||
* (the first one, BASE<T> being known).
|
||||
*/
|
||||
template<typename U>
|
||||
friend inline constexpr
|
||||
bool MATH_PURE operator==(const VECTOR<T>& lv, const VECTOR<U>& rv) {
|
||||
for (size_t i = 0; i < lv.size(); i++) {
|
||||
if (lv[i] != rv[i]) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename U>
|
||||
friend inline constexpr
|
||||
bool MATH_PURE operator!=(const VECTOR<T>& lv, const VECTOR<U>& rv) {
|
||||
return !operator==(lv, rv);
|
||||
}
|
||||
|
||||
template<typename U>
|
||||
friend inline constexpr
|
||||
VECTOR<bool> MATH_PURE equal(const VECTOR<T>& lv, const VECTOR<U>& rv) {
|
||||
VECTOR<bool> r{};
|
||||
for (size_t i = 0; i < lv.size(); i++) {
|
||||
r[i] = lv[i] == rv[i];
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
template<typename U>
|
||||
friend inline constexpr
|
||||
VECTOR<bool> MATH_PURE notEqual(const VECTOR<T>& lv, const VECTOR<U>& rv) {
|
||||
VECTOR<bool> r{};
|
||||
for (size_t i = 0; i < lv.size(); i++) {
|
||||
r[i] = lv[i] != rv[i];
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
template<typename U>
|
||||
friend inline constexpr
|
||||
VECTOR<bool> MATH_PURE lessThan(const VECTOR<T>& lv, const VECTOR<U>& rv) {
|
||||
VECTOR<bool> r{};
|
||||
for (size_t i = 0; i < lv.size(); i++) {
|
||||
r[i] = lv[i] < rv[i];
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
template<typename U>
|
||||
friend inline constexpr
|
||||
VECTOR<bool> MATH_PURE lessThanEqual(const VECTOR<T>& lv, const VECTOR<U>& rv) {
|
||||
VECTOR<bool> r{};
|
||||
for (size_t i = 0; i < lv.size(); i++) {
|
||||
r[i] = lv[i] <= rv[i];
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
template<typename U>
|
||||
friend inline constexpr
|
||||
VECTOR<bool> MATH_PURE greaterThan(const VECTOR<T>& lv, const VECTOR<U>& rv) {
|
||||
VECTOR<bool> r;
|
||||
for (size_t i = 0; i < lv.size(); i++) {
|
||||
r[i] = lv[i] > rv[i];
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
template<typename U>
|
||||
friend inline
|
||||
VECTOR<bool> MATH_PURE greaterThanEqual(const VECTOR<T>& lv, const VECTOR<U>& rv) {
|
||||
VECTOR<bool> r{};
|
||||
for (size_t i = 0; i < lv.size(); i++) {
|
||||
r[i] = lv[i] >= rv[i];
|
||||
}
|
||||
return r;
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
* TVecFunctions implements functions on a vector of type BASE<T>.
|
||||
*
|
||||
* BASE only needs to implement operator[] and size().
|
||||
* By simply inheriting from TVecFunctions<BASE, T> BASE will automatically
|
||||
* get all the functionality here.
|
||||
*/
|
||||
template<template<typename T> class VECTOR, typename T>
|
||||
class TVecFunctions {
|
||||
private:
|
||||
/*
|
||||
* NOTE: the functions below ARE NOT member methods. They are friend functions
|
||||
* with they definition inlined with their declaration. This makes these
|
||||
* template functions available to the compiler when (and only when) this class
|
||||
* is instantiated, at which point they're only templated on the 2nd parameter
|
||||
* (the first one, BASE<T> being known).
|
||||
*/
|
||||
template<typename U>
|
||||
friend constexpr inline
|
||||
arithmetic_result_t<T, U> MATH_PURE dot(const VECTOR<T>& lv, const VECTOR<U>& rv) {
|
||||
arithmetic_result_t<T, U> r{};
|
||||
for (size_t i = 0; i < lv.size(); i++) {
|
||||
r += lv[i] * rv[i];
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
friend inline T MATH_PURE norm(const VECTOR<T>& lv) {
|
||||
return std::sqrt(dot(lv, lv));
|
||||
}
|
||||
|
||||
friend inline T MATH_PURE length(const VECTOR<T>& lv) {
|
||||
return norm(lv);
|
||||
}
|
||||
|
||||
friend inline constexpr T MATH_PURE norm2(const VECTOR<T>& lv) {
|
||||
return dot(lv, lv);
|
||||
}
|
||||
|
||||
friend inline constexpr T MATH_PURE length2(const VECTOR<T>& lv) {
|
||||
return norm2(lv);
|
||||
}
|
||||
|
||||
template<typename U>
|
||||
friend inline constexpr
|
||||
arithmetic_result_t<T, U> MATH_PURE distance(const VECTOR<T>& lv, const VECTOR<U>& rv) {
|
||||
return length(rv - lv);
|
||||
}
|
||||
|
||||
template<typename U>
|
||||
friend inline constexpr
|
||||
arithmetic_result_t<T, U> MATH_PURE distance2(const VECTOR<T>& lv, const VECTOR<U>& rv) {
|
||||
return length2(rv - lv);
|
||||
}
|
||||
|
||||
friend inline VECTOR<T> MATH_PURE normalize(const VECTOR<T>& lv) {
|
||||
return lv * (T(1) / length(lv));
|
||||
}
|
||||
|
||||
friend inline VECTOR<T> MATH_PURE rcp(VECTOR<T> v) {
|
||||
return T(1) / v;
|
||||
}
|
||||
|
||||
friend inline constexpr VECTOR<T> MATH_PURE abs(VECTOR<T> v) {
|
||||
for (size_t i = 0; i < v.size(); i++) {
|
||||
v[i] = v[i] < 0 ? -v[i] : v[i];
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
friend inline VECTOR<T> MATH_PURE floor(VECTOR<T> v) {
|
||||
for (size_t i = 0; i < v.size(); i++) {
|
||||
v[i] = std::floor(v[i]);
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
friend inline VECTOR<T> MATH_PURE ceil(VECTOR<T> v) {
|
||||
for (size_t i = 0; i < v.size(); i++) {
|
||||
v[i] = std::ceil(v[i]);
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
friend inline VECTOR<T> MATH_PURE round(VECTOR<T> v) {
|
||||
for (size_t i = 0; i < v.size(); i++) {
|
||||
v[i] = std::round(v[i]);
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
friend inline VECTOR<T> MATH_PURE inversesqrt(VECTOR<T> v) {
|
||||
for (size_t i = 0; i < v.size(); i++) {
|
||||
v[i] = T(1) / std::sqrt(v[i]);
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
friend inline VECTOR<T> MATH_PURE sqrt(VECTOR<T> v) {
|
||||
for (size_t i = 0; i < v.size(); i++) {
|
||||
v[i] = std::sqrt(v[i]);
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
friend inline VECTOR<T> MATH_PURE cbrt(VECTOR<T> v) {
|
||||
for (size_t i = 0; i < v.size(); i++) {
|
||||
v[i] = std::cbrt(v[i]);
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
friend inline VECTOR<T> MATH_PURE exp(VECTOR<T> v) {
|
||||
for (size_t i = 0; i < v.size(); i++) {
|
||||
v[i] = std::exp(v[i]);
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
friend inline VECTOR<T> MATH_PURE sign(VECTOR<T> v) {
|
||||
for (size_t i = 0; i < v.size(); i++) {
|
||||
v[i] = std::copysign(T(1), v[i]);
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
friend inline VECTOR<T> MATH_PURE pow(VECTOR<T> v, T p) {
|
||||
for (size_t i = 0; i < v.size(); i++) {
|
||||
v[i] = std::pow(v[i], p);
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
friend inline VECTOR<T> MATH_PURE pow(T v, VECTOR<T> p) {
|
||||
for (size_t i = 0; i < p.size(); i++) {
|
||||
p[i] = std::pow(v, p[i]);
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
friend inline VECTOR<T> MATH_PURE pow(VECTOR<T> v, VECTOR<T> p) {
|
||||
for (size_t i = 0; i < v.size(); i++) {
|
||||
v[i] = std::pow(v[i], p[i]);
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
friend inline VECTOR<T> MATH_PURE log(VECTOR<T> v) {
|
||||
for (size_t i = 0; i < v.size(); i++) {
|
||||
v[i] = std::log(v[i]);
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
friend inline VECTOR<T> MATH_PURE log10(VECTOR<T> v) {
|
||||
for (size_t i = 0; i < v.size(); i++) {
|
||||
v[i] = std::log10(v[i]);
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
friend inline VECTOR<T> MATH_PURE log2(VECTOR<T> v) {
|
||||
for (size_t i = 0; i < v.size(); i++) {
|
||||
v[i] = std::log2(v[i]);
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
friend inline constexpr VECTOR<T> MATH_PURE saturate(const VECTOR<T>& lv) {
|
||||
return clamp(lv, T(0), T(1));
|
||||
}
|
||||
|
||||
friend inline constexpr VECTOR<T> MATH_PURE clamp(VECTOR<T> v, T min, T max) {
|
||||
for (size_t i = 0; i < v.size(); i++) {
|
||||
v[i] = details::min(max, details::max(min, v[i]));
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
friend inline constexpr VECTOR<T> MATH_PURE clamp(VECTOR<T> v, VECTOR<T> min, VECTOR<T> max) {
|
||||
for (size_t i = 0; i < v.size(); i++) {
|
||||
v[i] = details::min(max[i], details::max(min[i], v[i]));
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
friend inline constexpr VECTOR<T> MATH_PURE fma(const VECTOR<T>& lv, const VECTOR<T>& rv,
|
||||
VECTOR<T> a) {
|
||||
for (size_t i = 0; i < lv.size(); i++) {
|
||||
a[i] += (lv[i] * rv[i]);
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
friend inline constexpr VECTOR<T> MATH_PURE min(const VECTOR<T>& u, VECTOR<T> v) {
|
||||
for (size_t i = 0; i < v.size(); i++) {
|
||||
v[i] = details::min(u[i], v[i]);
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
friend inline constexpr VECTOR<T> MATH_PURE max(const VECTOR<T>& u, VECTOR<T> v) {
|
||||
for (size_t i = 0; i < v.size(); i++) {
|
||||
v[i] = details::max(u[i], v[i]);
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
friend inline constexpr T MATH_PURE max(const VECTOR<T>& v) {
|
||||
T r(v[0]);
|
||||
for (size_t i = 1; i < v.size(); i++) {
|
||||
r = max(r, v[i]);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
friend inline constexpr T MATH_PURE min(const VECTOR<T>& v) {
|
||||
T r(v[0]);
|
||||
for (size_t i = 1; i < v.size(); i++) {
|
||||
r = min(r, v[i]);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
friend inline constexpr VECTOR<T> MATH_PURE mix(const VECTOR<T>& u, VECTOR<T> v, T a) {
|
||||
for (size_t i = 0; i < v.size(); i++) {
|
||||
v[i] = u[i] * (T(1) - a) + v[i] * a;
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
friend inline constexpr VECTOR<T> MATH_PURE smoothstep(T edge0, T edge1, VECTOR<T> v) {
|
||||
VECTOR<T> t = saturate((v - edge0) / (edge1 - edge0));
|
||||
return t * t * (T(3) - T(2) * t);
|
||||
}
|
||||
|
||||
friend inline constexpr VECTOR<T> MATH_PURE step(T edge, VECTOR<T> v) {
|
||||
for (size_t i = 0; i < v.size(); i++) {
|
||||
v[i] = v[i] < edge ? T(0) : T(1);
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
friend inline constexpr VECTOR<T> MATH_PURE step(VECTOR<T> edge, VECTOR<T> v) {
|
||||
for (size_t i = 0; i < v.size(); i++) {
|
||||
v[i] = v[i] < edge[i] ? T(0) : T(1);
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
friend inline constexpr bool MATH_PURE any(const VECTOR<T>& v) {
|
||||
for (size_t i = 0; i < v.size(); i++) {
|
||||
if (v[i] != T(0)) return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
friend inline constexpr bool MATH_PURE all(const VECTOR<T>& v) {
|
||||
bool result = true;
|
||||
for (size_t i = 0; i < v.size(); i++) {
|
||||
result &= (v[i] != T(0));
|
||||
}
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace filament::math::details
|
||||
|
||||
#endif // TNT_MATH_TVECHELPERS_H
|
||||
Reference in New Issue
Block a user