add macOS implementation
This commit is contained in:
503
macos/include/math/mat3.h
Normal file
503
macos/include/math/mat3.h
Normal file
@@ -0,0 +1,503 @@
|
||||
/*
|
||||
* Copyright 2013 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef TNT_MATH_MAT3_H
|
||||
#define TNT_MATH_MAT3_H
|
||||
|
||||
#include <math/TMatHelpers.h>
|
||||
#include <math/compiler.h>
|
||||
#include <math/quat.h>
|
||||
#include <math/vec3.h>
|
||||
|
||||
#include <limits.h>
|
||||
#include <stdint.h>
|
||||
#include <sys/types.h>
|
||||
|
||||
namespace filament {
|
||||
namespace math {
|
||||
// -------------------------------------------------------------------------------------
|
||||
namespace details {
|
||||
|
||||
/**
|
||||
* A 3x3 column-major matrix class.
|
||||
*
|
||||
* Conceptually a 3x3 matrix is a an array of 3 column vec3:
|
||||
*
|
||||
* mat3 m =
|
||||
* \f$
|
||||
* \left(
|
||||
* \begin{array}{ccc}
|
||||
* m[0] & m[1] & m[2] \\
|
||||
* \end{array}
|
||||
* \right)
|
||||
* \f$
|
||||
* =
|
||||
* \f$
|
||||
* \left(
|
||||
* \begin{array}{ccc}
|
||||
* m[0][0] & m[1][0] & m[2][0] \\
|
||||
* m[0][1] & m[1][1] & m[2][1] \\
|
||||
* m[0][2] & m[1][2] & m[2][2] \\
|
||||
* \end{array}
|
||||
* \right)
|
||||
* \f$
|
||||
* =
|
||||
* \f$
|
||||
* \left(
|
||||
* \begin{array}{ccc}
|
||||
* m(0,0) & m(0,1) & m(0,2) \\
|
||||
* m(1,0) & m(1,1) & m(1,2) \\
|
||||
* m(2,0) & m(2,1) & m(2,2) \\
|
||||
* \end{array}
|
||||
* \right)
|
||||
* \f$
|
||||
*
|
||||
* m[n] is the \f$ n^{th} \f$ column of the matrix and is a vec3.
|
||||
*
|
||||
*/
|
||||
template<typename T>
|
||||
class MATH_EMPTY_BASES TMat33 :
|
||||
public TVecUnaryOperators<TMat33, T>,
|
||||
public TVecComparisonOperators<TMat33, T>,
|
||||
public TVecAddOperators<TMat33, T>,
|
||||
public TMatProductOperators<TMat33, T, TVec3>,
|
||||
public TMatSquareFunctions<TMat33, T>,
|
||||
public TMatTransform<TMat33, T>,
|
||||
public TMatHelpers<TMat33, T> {
|
||||
public:
|
||||
enum no_init {
|
||||
NO_INIT
|
||||
};
|
||||
typedef T value_type;
|
||||
typedef T& reference;
|
||||
typedef T const& const_reference;
|
||||
typedef size_t size_type;
|
||||
typedef TVec3<T> col_type;
|
||||
typedef TVec3<T> row_type;
|
||||
|
||||
static constexpr size_t COL_SIZE = col_type::SIZE; // size of a column (i.e.: number of rows)
|
||||
static constexpr size_t ROW_SIZE = row_type::SIZE; // size of a row (i.e.: number of columns)
|
||||
static constexpr size_t NUM_ROWS = COL_SIZE;
|
||||
static constexpr size_t NUM_COLS = ROW_SIZE;
|
||||
|
||||
private:
|
||||
/*
|
||||
* <-- N columns -->
|
||||
*
|
||||
* a[0][0] a[1][0] a[2][0] ... a[N][0] ^
|
||||
* a[0][1] a[1][1] a[2][1] ... a[N][1] |
|
||||
* a[0][2] a[1][2] a[2][2] ... a[N][2] M rows
|
||||
* ... |
|
||||
* a[0][M] a[1][M] a[2][M] ... a[N][M] v
|
||||
*
|
||||
* COL_SIZE = M
|
||||
* ROW_SIZE = N
|
||||
* m[0] = [ a[0][0] a[0][1] a[0][2] ... a[0][M] ]
|
||||
*/
|
||||
|
||||
col_type m_value[NUM_COLS];
|
||||
|
||||
public:
|
||||
// array access
|
||||
inline constexpr col_type const& operator[](size_t column) const noexcept {
|
||||
assert(column < NUM_COLS);
|
||||
return m_value[column];
|
||||
}
|
||||
|
||||
inline constexpr col_type& operator[](size_t column) noexcept {
|
||||
assert(column < NUM_COLS);
|
||||
return m_value[column];
|
||||
}
|
||||
|
||||
/**
|
||||
* constructors
|
||||
*/
|
||||
|
||||
/**
|
||||
* leaves object uninitialized. use with caution.
|
||||
*/
|
||||
constexpr explicit TMat33(no_init) noexcept {}
|
||||
|
||||
|
||||
/**
|
||||
* initialize to identity.
|
||||
*
|
||||
* \f$
|
||||
* \left(
|
||||
* \begin{array}{ccc}
|
||||
* 1 & 0 & 0 \\
|
||||
* 0 & 1 & 0 \\
|
||||
* 0 & 0 & 1 \\
|
||||
* \end{array}
|
||||
* \right)
|
||||
* \f$
|
||||
*/
|
||||
constexpr TMat33() noexcept;
|
||||
|
||||
/**
|
||||
* initialize to Identity*scalar.
|
||||
*
|
||||
* \f$
|
||||
* \left(
|
||||
* \begin{array}{ccc}
|
||||
* v & 0 & 0 \\
|
||||
* 0 & v & 0 \\
|
||||
* 0 & 0 & v \\
|
||||
* \end{array}
|
||||
* \right)
|
||||
* \f$
|
||||
*/
|
||||
template<typename U>
|
||||
constexpr explicit TMat33(U v) noexcept;
|
||||
|
||||
/**
|
||||
* sets the diagonal to a vector.
|
||||
*
|
||||
* \f$
|
||||
* \left(
|
||||
* \begin{array}{ccc}
|
||||
* v[0] & 0 & 0 \\
|
||||
* 0 & v[1] & 0 \\
|
||||
* 0 & 0 & v[2] \\
|
||||
* \end{array}
|
||||
* \right)
|
||||
* \f$
|
||||
*/
|
||||
template<typename U>
|
||||
constexpr explicit TMat33(const TVec3<U>& v) noexcept;
|
||||
|
||||
/**
|
||||
* construct from another matrix of the same size
|
||||
*/
|
||||
template<typename U>
|
||||
constexpr explicit TMat33(const TMat33<U>& rhs) noexcept;
|
||||
|
||||
/**
|
||||
* construct from 3 column vectors.
|
||||
*
|
||||
* \f$
|
||||
* \left(
|
||||
* \begin{array}{ccc}
|
||||
* v0 & v1 & v2 \\
|
||||
* \end{array}
|
||||
* \right)
|
||||
* \f$
|
||||
*/
|
||||
template<typename A, typename B, typename C>
|
||||
constexpr TMat33(const TVec3<A>& v0, const TVec3<B>& v1, const TVec3<C>& v2) noexcept;
|
||||
|
||||
/** construct from 9 elements in column-major form.
|
||||
*
|
||||
* \f$
|
||||
* \left(
|
||||
* \begin{array}{ccc}
|
||||
* m[0][0] & m[1][0] & m[2][0] \\
|
||||
* m[0][1] & m[1][1] & m[2][1] \\
|
||||
* m[0][2] & m[1][2] & m[2][2] \\
|
||||
* \end{array}
|
||||
* \right)
|
||||
* \f$
|
||||
*/
|
||||
template<
|
||||
typename A, typename B, typename C,
|
||||
typename D, typename E, typename F,
|
||||
typename G, typename H, typename I>
|
||||
constexpr explicit TMat33(A m00, B m01, C m02,
|
||||
D m10, E m11, F m12,
|
||||
G m20, H m21, I m22) noexcept;
|
||||
|
||||
|
||||
struct row_major_init {
|
||||
template<
|
||||
typename A, typename B, typename C,
|
||||
typename D, typename E, typename F,
|
||||
typename G, typename H, typename I>
|
||||
constexpr explicit row_major_init(A m00, B m01, C m02,
|
||||
D m10, E m11, F m12,
|
||||
G m20, H m21, I m22) noexcept
|
||||
: m(m00, m10, m20,
|
||||
m01, m11, m21,
|
||||
m02, m12, m22) {}
|
||||
|
||||
private:
|
||||
friend TMat33;
|
||||
TMat33 m;
|
||||
};
|
||||
|
||||
constexpr explicit TMat33(row_major_init c) noexcept : TMat33(std::move(c.m)) {}
|
||||
|
||||
/**
|
||||
* construct from a quaternion
|
||||
*/
|
||||
template<typename U>
|
||||
constexpr explicit TMat33(const TQuaternion<U>& q) noexcept;
|
||||
|
||||
/**
|
||||
* orthogonalize only works on matrices of size 3x3
|
||||
*/
|
||||
friend inline
|
||||
constexpr TMat33 orthogonalize(const TMat33& m) noexcept {
|
||||
TMat33 ret(TMat33::NO_INIT);
|
||||
ret[0] = normalize(m[0]);
|
||||
ret[2] = normalize(cross(ret[0], m[1]));
|
||||
ret[1] = normalize(cross(ret[2], ret[0]));
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a matrix suitable for transforming normals
|
||||
*
|
||||
* Note that the inverse-transpose of a matrix is equal to its cofactor matrix divided by its
|
||||
* determinant:
|
||||
*
|
||||
* transpose(inverse(M)) = cof(M) / det(M)
|
||||
*
|
||||
* The cofactor matrix is faster to compute than the inverse-transpose, and it can be argued
|
||||
* that it is a more correct way of transforming normals anyway. Some references from Dale
|
||||
* Weiler, Nathan Reed, Inigo Quilez, and Eric Lengyel:
|
||||
*
|
||||
* - https://github.com/graphitemaster/normals_revisited
|
||||
* - http://www.reedbeta.com/blog/normals-inverse-transpose-part-1/
|
||||
* - https://www.shadertoy.com/view/3s33zj
|
||||
* - FGED Volume 1, section 1.7.5 "Inverses of Small Matrices"
|
||||
* - FGED Volume 1, section 3.2.2 "Transforming Normal Vectors"
|
||||
*
|
||||
* In "Transforming Normal Vectors", Lengyel notes that there are two types of transformed
|
||||
* normals: one that uses the transposed adjugate (aka cofactor matrix) and one that uses the
|
||||
* transposed inverse. He goes on to say that this difference is inconsequential, except when
|
||||
* mirroring is involved.
|
||||
*
|
||||
* @param m the transform applied to vertices
|
||||
* @return a matrix to apply to normals
|
||||
*
|
||||
* @warning normals transformed by this matrix must be normalized
|
||||
*/
|
||||
static constexpr TMat33 getTransformForNormals(const TMat33& m) noexcept {
|
||||
return matrix::cof(m);
|
||||
}
|
||||
|
||||
/**
|
||||
* Packs the tangent frame represented by the specified matrix into a quaternion.
|
||||
* Reflection is preserved by encoding it as the sign of the w component in the
|
||||
* resulting quaternion. Since -0 cannot always be represented on the GPU, this
|
||||
* function computes a bias to ensure values are always either positive or negative,
|
||||
* never 0. The bias is computed based on the specified storageSize, which defaults
|
||||
* to 2 bytes, making the resulting quaternion suitable for storage into an SNORM16
|
||||
* vector.
|
||||
*/
|
||||
static constexpr TQuaternion<T> packTangentFrame(
|
||||
const TMat33& m, size_t storageSize = sizeof(int16_t)) noexcept;
|
||||
|
||||
template<typename A>
|
||||
static constexpr TMat33 translation(const TVec3<A>& t) noexcept {
|
||||
TMat33 r;
|
||||
r[2] = t;
|
||||
return r;
|
||||
}
|
||||
|
||||
template<typename A>
|
||||
static constexpr TMat33 scaling(const TVec3<A>& s) noexcept {
|
||||
return TMat33{ s };
|
||||
}
|
||||
|
||||
template<typename A>
|
||||
static constexpr TMat33 scaling(A s) noexcept {
|
||||
return TMat33{ TVec3<T>{ s }};
|
||||
}
|
||||
};
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
// Constructors
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
// Since the matrix code could become pretty big quickly, we don't inline most
|
||||
// operations.
|
||||
|
||||
template<typename T>
|
||||
constexpr TMat33<T>::TMat33() noexcept
|
||||
: m_value{
|
||||
col_type(1, 0, 0),
|
||||
col_type(0, 1, 0),
|
||||
col_type(0, 0, 1) } {
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
template<typename U>
|
||||
constexpr TMat33<T>::TMat33(U v) noexcept
|
||||
: m_value{
|
||||
col_type(v, 0, 0),
|
||||
col_type(0, v, 0),
|
||||
col_type(0, 0, v) } {
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
template<typename U>
|
||||
constexpr TMat33<T>::TMat33(const TVec3<U>& v) noexcept
|
||||
: m_value{
|
||||
col_type(v[0], 0, 0),
|
||||
col_type(0, v[1], 0),
|
||||
col_type(0, 0, v[2]) } {
|
||||
}
|
||||
|
||||
// construct from 16 scalars. Note that the arrangement
|
||||
// of values in the constructor is the transpose of the matrix
|
||||
// notation.
|
||||
template<typename T>
|
||||
template<
|
||||
typename A, typename B, typename C,
|
||||
typename D, typename E, typename F,
|
||||
typename G, typename H, typename I>
|
||||
constexpr TMat33<T>::TMat33(A m00, B m01, C m02,
|
||||
D m10, E m11, F m12,
|
||||
G m20, H m21, I m22) noexcept
|
||||
: m_value{
|
||||
col_type(m00, m01, m02),
|
||||
col_type(m10, m11, m12),
|
||||
col_type(m20, m21, m22) } {
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
template<typename U>
|
||||
constexpr TMat33<T>::TMat33(const TMat33<U>& rhs) noexcept {
|
||||
for (size_t col = 0; col < NUM_COLS; ++col) {
|
||||
m_value[col] = col_type(rhs[col]);
|
||||
}
|
||||
}
|
||||
|
||||
// Construct from 3 column vectors.
|
||||
template<typename T>
|
||||
template<typename A, typename B, typename C>
|
||||
constexpr TMat33<T>::TMat33(const TVec3<A>& v0, const TVec3<B>& v1, const TVec3<C>& v2) noexcept
|
||||
: m_value{ v0, v1, v2 } {
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
template<typename U>
|
||||
constexpr TMat33<T>::TMat33(const TQuaternion<U>& q) noexcept : m_value{} {
|
||||
const U n = q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w;
|
||||
const U s = n > 0 ? 2 / n : 0;
|
||||
const U x = s * q.x;
|
||||
const U y = s * q.y;
|
||||
const U z = s * q.z;
|
||||
const U xx = x * q.x;
|
||||
const U xy = x * q.y;
|
||||
const U xz = x * q.z;
|
||||
const U xw = x * q.w;
|
||||
const U yy = y * q.y;
|
||||
const U yz = y * q.z;
|
||||
const U yw = y * q.w;
|
||||
const U zz = z * q.z;
|
||||
const U zw = z * q.w;
|
||||
m_value[0] = col_type(1 - yy - zz, xy + zw, xz - yw); // NOLINT
|
||||
m_value[1] = col_type(xy - zw, 1 - xx - zz, yz + xw); // NOLINT
|
||||
m_value[2] = col_type(xz + yw, yz - xw, 1 - xx - yy); // NOLINT
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
template<typename T>
|
||||
constexpr TQuaternion<T> TMat33<T>::packTangentFrame(const TMat33<T>& m, size_t storageSize) noexcept {
|
||||
TQuaternion<T> q = TMat33<T>{ m[0], cross(m[2], m[0]), m[2] }.toQuaternion();
|
||||
q = positive(normalize(q));
|
||||
|
||||
// Ensure w is never 0.0
|
||||
// Bias is 2^(nb_bits - 1) - 1
|
||||
const T bias = T(1.0) / T((1 << (storageSize * CHAR_BIT - 1)) - 1);
|
||||
if (q.w < bias) {
|
||||
q.w = bias;
|
||||
|
||||
const T factor = (T)(std::sqrt(1.0 - (double)bias * (double)bias));
|
||||
q.xyz *= factor;
|
||||
}
|
||||
|
||||
// If there's a reflection ((n x t) . b <= 0), make sure w is negative
|
||||
if (dot(cross(m[0], m[2]), m[1]) < T(0)) {
|
||||
q = -q;
|
||||
}
|
||||
|
||||
return q;
|
||||
}
|
||||
|
||||
|
||||
} // namespace details
|
||||
|
||||
/**
|
||||
* Pre-scale a matrix m by the inverse of the largest scale factor to avoid large post-transform
|
||||
* magnitudes in the shader. This is useful for normal transformations, to avoid large
|
||||
* post-transform magnitudes in the shader, especially in the fragment shader, where we use
|
||||
* medium precision.
|
||||
*/
|
||||
template<typename T>
|
||||
constexpr details::TMat33<T> prescaleForNormals(const details::TMat33<T>& m) noexcept {
|
||||
return m * details::TMat33<T>(
|
||||
1.0 / std::sqrt(max(float3{length2(m[0]), length2(m[1]), length2(m[2])})));
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
typedef details::TMat33<double> mat3;
|
||||
typedef details::TMat33<float> mat3f;
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
} // namespace math
|
||||
} // namespace filament
|
||||
|
||||
namespace std {
|
||||
template<typename T>
|
||||
constexpr void swap(filament::math::details::TMat33<T>& lhs,
|
||||
filament::math::details::TMat33<T>& rhs) noexcept {
|
||||
// This generates much better code than the default implementation
|
||||
// It's unclear why, I believe this is due to an optimization bug in the clang.
|
||||
//
|
||||
// filament::math::details::TMat33<T> t(lhs);
|
||||
// lhs = rhs;
|
||||
// rhs = t;
|
||||
//
|
||||
// clang always copy lhs on the stack, even if it's never using it (it's using the
|
||||
// copy it has in registers).
|
||||
|
||||
const T t00 = lhs[0][0];
|
||||
const T t01 = lhs[0][1];
|
||||
const T t02 = lhs[0][2];
|
||||
const T t10 = lhs[1][0];
|
||||
const T t11 = lhs[1][1];
|
||||
const T t12 = lhs[1][2];
|
||||
const T t20 = lhs[2][0];
|
||||
const T t21 = lhs[2][1];
|
||||
const T t22 = lhs[2][2];
|
||||
|
||||
lhs[0][0] = rhs[0][0];
|
||||
lhs[0][1] = rhs[0][1];
|
||||
lhs[0][2] = rhs[0][2];
|
||||
lhs[1][0] = rhs[1][0];
|
||||
lhs[1][1] = rhs[1][1];
|
||||
lhs[1][2] = rhs[1][2];
|
||||
lhs[2][0] = rhs[2][0];
|
||||
lhs[2][1] = rhs[2][1];
|
||||
lhs[2][2] = rhs[2][2];
|
||||
|
||||
rhs[0][0] = t00;
|
||||
rhs[0][1] = t01;
|
||||
rhs[0][2] = t02;
|
||||
rhs[1][0] = t10;
|
||||
rhs[1][1] = t11;
|
||||
rhs[1][2] = t12;
|
||||
rhs[2][0] = t20;
|
||||
rhs[2][1] = t21;
|
||||
rhs[2][2] = t22;
|
||||
}
|
||||
}
|
||||
|
||||
#endif // TNT_MATH_MAT3_H
|
||||
Reference in New Issue
Block a user