(flutter) provide nicer implementation of FixedOrbitCameraRotationDelegate

This commit is contained in:
Nick Fisher
2024-09-25 19:26:19 +08:00
parent 4b1d8ce729
commit 85d6946645
2 changed files with 86 additions and 84 deletions

View File

@@ -50,20 +50,17 @@ class DelegateGestureHandler implements ThermionGestureHandler {
}
factory DelegateGestureHandler.fixedOrbit(ThermionViewer viewer,
{double? Function(Vector3)? getDistanceToTarget,
double rotationSensitivity = 0.001,
double zoomSensitivity = 0.001,
double baseAnglePerMeterNumerator = 10000,
{double minimumDistance = 10.0,
double? Function(Vector3)? getDistanceToTarget,
PickDelegate? pickDelegate}) =>
DelegateGestureHandler(
viewer: viewer,
pickDelegate: pickDelegate,
cameraDelegate: FixedOrbitRotateCameraDelegate(viewer,
getDistanceToTarget: getDistanceToTarget,
rotationSensitivity: rotationSensitivity,
baseAnglePerMeterNumerator: baseAnglePerMeterNumerator,
zoomSensitivity: zoomSensitivity),
minimumDistance: minimumDistance),
velocityDelegate: DefaultVelocityDelegate(),
actions: {GestureType.MMB_HOLD_AND_MOVE:GestureAction.ROTATE_CAMERA}
);
factory DelegateGestureHandler.flight(ThermionViewer viewer,
@@ -193,6 +190,7 @@ class DelegateGestureHandler implements ThermionGestureHandler {
} catch (e) {
_logger.warning("Error during scroll accumulation: $e");
}
await _applyAccumulatedUpdates();
}
@override

View File

@@ -1,48 +1,36 @@
import 'dart:async';
import 'dart:math';
import 'dart:ui';
import 'package:flutter/src/services/keyboard_key.g.dart';
import 'package:flutter/widgets.dart';
import 'package:flutter/services.dart';
import 'package:thermion_dart/thermion_dart/thermion_viewer.dart';
import 'package:thermion_flutter/thermion/widgets/camera/gestures/v2/default_zoom_camera_delegate.dart';
import 'package:thermion_flutter/thermion/widgets/camera/gestures/v2/delegates.dart';
import 'package:vector_math/vector_math_64.dart';
/// A camera delegate that rotates the camera around the origin.
/// Panning is not permitted; zooming is permitted (up to a minimum distance)
///
/// The rotation sensitivity will be automatically adjusted so that
/// 100 horizontal pixels equates to a geodetic distance of 1m when the camera
/// is 1m from the surface (denoted by distanceToSurface). This scales to 10m
/// geodetic distance when the camera is 100m from the surface, 100m when the
/// camera is 1000m from the surface, and so on.
///
///
class FixedOrbitRotateCameraDelegate implements CameraDelegate {
final ThermionViewer viewer;
double rotationSensitivity = 0.01;
late DefaultZoomCameraDelegate _zoomCameraDelegate;
final double minimumDistance;
double? Function(Vector3)? getDistanceToTarget;
Offset _accumulatedRotationDelta = Offset.zero;
double _accumulatedZoomDelta = 0.0;
static final _up = Vector3(0, 1, 0);
Timer? _updateTimer;
Vector3 _targetPosition = Vector3(0, 0, 0);
double? Function(Vector3)? getDistanceToTarget;
FixedOrbitRotateCameraDelegate(this.viewer,
{this.getDistanceToTarget,
double? rotationSensitivity,
double zoomSensitivity = 0.005}) {
_zoomCameraDelegate = DefaultZoomCameraDelegate(this.viewer,
zoomSensitivity: zoomSensitivity,
getDistanceToTarget: getDistanceToTarget);
this.rotationSensitivity = rotationSensitivity ?? 0.01;
_startUpdateTimer();
}
void _startUpdateTimer() {
_updateTimer = Timer.periodic(const Duration(milliseconds: 16), (_) {
_applyAccumulatedUpdates();
});
}
FixedOrbitRotateCameraDelegate(
this.viewer, {
this.getDistanceToTarget,
this.minimumDistance = 10.0,
});
void dispose() {
_updateTimer?.cancel();
@@ -51,6 +39,7 @@ class FixedOrbitRotateCameraDelegate implements CameraDelegate {
@override
Future<void> rotate(Offset delta, Vector2? velocity) async {
_accumulatedRotationDelta += delta;
await _applyAccumulatedUpdates();
}
@override
@@ -60,11 +49,8 @@ class FixedOrbitRotateCameraDelegate implements CameraDelegate {
@override
Future<void> zoom(double yScrollDeltaInPixels, Vector2? velocity) async {
if (yScrollDeltaInPixels > 1) {
_accumulatedZoomDelta++;
} else {
_accumulatedZoomDelta--;
}
_accumulatedZoomDelta += yScrollDeltaInPixels > 0 ? 1 : -1;
await _applyAccumulatedUpdates();
}
Future<void> _applyAccumulatedUpdates() async {
@@ -73,64 +59,82 @@ class FixedOrbitRotateCameraDelegate implements CameraDelegate {
return;
}
var viewMatrix = await viewer.getCameraViewMatrix();
var modelMatrix = await viewer.getCameraModelMatrix();
Vector3 cameraPosition = modelMatrix.getTranslation();
var projectionMatrix = await viewer.getCameraProjectionMatrix();
var inverseProjectionMatrix = projectionMatrix.clone()..invert();
Vector3 currentPosition = modelMatrix.getTranslation();
final heightAboveSurface = getDistanceToTarget?.call(cameraPosition) ?? 1.0;
Vector3 forward = -currentPosition.normalized();
Vector3 right = _up.cross(forward).normalized();
Vector3 up = forward.cross(right);
final sphereRadius = cameraPosition.length - heightAboveSurface;
// Apply rotation
if (_accumulatedRotationDelta.distanceSquared > 0) {
// Calculate the distance factor
final distanceFactor = sqrt((heightAboveSurface / sphereRadius) + 1);
// Adjust the base angle per meter
final baseAnglePerMeter = 10000 / sphereRadius;
final adjustedAnglePerMeter = baseAnglePerMeter * distanceFactor;
final metersOnSurface = _accumulatedRotationDelta;
final rotationX = metersOnSurface.dy * adjustedAnglePerMeter;
final rotationY = metersOnSurface.dx * adjustedAnglePerMeter;
Matrix4 rotation = Matrix4.rotationX(rotationX)..rotateY(rotationY);
Vector3 newPos = rotation.getRotation() * cameraPosition;
cameraPosition = newPos;
// first, we find the point in the sphere that intersects with the camera
// forward vector
double radius = 0.0;
double? distanceToTarget = getDistanceToTarget?.call(currentPosition);
if (distanceToTarget != null) {
radius = currentPosition.length - distanceToTarget;
} else {
radius = 1.0;
}
Vector3 intersection = (-forward).scaled(radius);
// Normalize the position to maintain constant distance from center
cameraPosition =
cameraPosition.normalized() * (sphereRadius + heightAboveSurface);
// next, calculate the depth value at that intersection point
final intersectionInViewSpace = viewMatrix *
Vector4(intersection.x, intersection.y, intersection.z, 1.0);
final intersectionInClipSpace = projectionMatrix * intersectionInViewSpace;
final intersectionInNdcSpace =
intersectionInClipSpace / intersectionInClipSpace.w;
// Apply zoom (modified to ensure minimum 10m distance)
// using that depth value, find the world space position of the mouse
// note we flip the signs of the X and Y values
final ndcX = 2 *
((-_accumulatedRotationDelta.dx * viewer.pixelRatio) /
viewer.viewportDimensions.$1);
final ndcY = 2 *
((_accumulatedRotationDelta.dy * viewer.pixelRatio) /
viewer.viewportDimensions.$2);
final ndc = Vector4(ndcX, ndcY, intersectionInNdcSpace.z, 1.0);
var clipSpace = Vector4(
ndc.x * intersectionInClipSpace.w,
ndcY * intersectionInClipSpace.w,
ndc.z * intersectionInClipSpace.w,
intersectionInClipSpace.w);
Vector4 cameraSpace = inverseProjectionMatrix * clipSpace;
Vector4 worldSpace = modelMatrix * cameraSpace;
// the new camera world space position will be that position,
// scaled to the camera's current distance
var worldSpace3 = worldSpace.xyz.normalized() * currentPosition.length;
currentPosition = worldSpace3;
// Apply zoom
if (_accumulatedZoomDelta != 0.0) {
var zoomFactor = -0.5 * _accumulatedZoomDelta;
double newHeight = heightAboveSurface * (1 - zoomFactor);
newHeight = newHeight.clamp(
10.0, double.infinity); // Prevent getting closer than 10m to surface
cameraPosition = cameraPosition.normalized() * (sphereRadius + newHeight);
// double zoomFactor = 1.0 + ();
Vector3 toSurface = currentPosition - intersection;
currentPosition = currentPosition + toSurface.scaled(_accumulatedZoomDelta * 0.1);
_accumulatedZoomDelta = 0.0;
}
// Ensure minimum 10m distance even after rotation
final currentHeight = cameraPosition.length - sphereRadius;
if (currentHeight < 10.0) {
cameraPosition = cameraPosition.normalized() * (sphereRadius + 10.0);
// Ensure minimum distance
if (currentPosition.length < radius + minimumDistance) {
currentPosition =
(currentPosition.normalized() * (radius + minimumDistance));
}
// Calculate view matrix (unchanged)
Vector3 forward = cameraPosition.normalized();
Vector3 up = Vector3(0, 1, 0);
final right = up.cross(forward)..normalize();
// Calculate view matrix
forward = -currentPosition.normalized();
right = _up.cross(forward).normalized();
up = forward.cross(right);
Matrix4 viewMatrix = makeViewMatrix(cameraPosition, Vector3.zero(), up);
viewMatrix.invert();
Matrix4 newViewMatrix = makeViewMatrix(currentPosition, Vector3.zero(), up);
newViewMatrix.invert();
// Set the camera model matrix
await viewer.setCameraModelMatrix4(viewMatrix);
await viewer.setCameraModelMatrix4(newViewMatrix);
_accumulatedRotationDelta = Offset.zero;
}