feat: rescale gizmo based on distance from camera

This commit is contained in:
Nick Fisher
2024-08-27 16:50:54 +08:00
parent f867e21647
commit e04cd0488e
2 changed files with 104 additions and 59 deletions

View File

@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:3158461d081f058dcb9582ce19cc2daedc73abbe758ba5094c94df89028d8c4d
size 981
oid sha256:f467a6361958bd8a3381dcd5895665c09932daf37e606b06c7f584de484b0d5d
size 1572

View File

@@ -14,8 +14,25 @@ namespace thermion_filament {
using namespace filament::gltfio;
Gizmo::Gizmo(Engine &engine) : _engine(engine)
Gizmo::Gizmo(Engine &engine, View* view, Scene* scene) : _engine(engine)
{
if(scene) {
_scene = scene;
_view = view;
_camera = &(_view->getCamera());
} else {
_scene = _engine.createScene();
_view = _engine.createView();
_view->setBlendMode(BlendMode::TRANSLUCENT);
utils::Entity camera = EntityManager::get().create();
_camera = engine.createCamera(camera);
_camera->setProjection(Camera::Projection::ORTHO, -1.0, 1.0, -1.0, 1.0, 1.0, 5.0);
_view->setScene(_scene);
_view->setCamera(_camera);
}
auto &entityManager = EntityManager::get();
auto &transformManager = engine.getTransformManager();
@@ -72,7 +89,7 @@ Gizmo::Gizmo(Engine &engine) : _engine(engine)
{centerCubeSize, centerCubeSize, centerCubeSize}})
.material(0, _materialInstances[3])
.layerMask(0xFF, 2)
.priority(0)
.priority(7)
.geometry(0, RenderableManager::PrimitiveType::TRIANGLES, centerCubeVb, centerCubeIb, 0, 36)
.culling(false)
.build(engine, _entities[3]);
@@ -83,9 +100,9 @@ Gizmo::Gizmo(Engine &engine) : _engine(engine)
// Line and arrow vertices
float lineLength = 0.8f;
float lineWidth = 0.01f;
float arrowLength = 0.2f;
float arrowWidth = 0.06f;
float lineWidth = 0.005f;
float arrowLength = 0.1f;
float arrowWidth = 0.03f;
float *vertices = new float[13 * 3]{
// Line vertices (8 vertices)
-lineWidth, -lineWidth, 0.0f,
@@ -146,12 +163,15 @@ Gizmo::Gizmo(Engine &engine) : _engine(engine)
switch (i)
{
case Axis::X:
// _materialInstances[i]->setParameter("axisDirection", math::float3 { 1.0f, 0.0f, 0.0f});
transform = math::mat4f::rotation(math::F_PI_2, math::float3{0, 1, 0});
break;
case 1:
// _materialInstances[i]->setParameter("axisDirection", math::float3 { 0.0f, 1.0f, 0.0f});
transform = math::mat4f::rotation(-math::F_PI_2, math::float3{1, 0, 0});
break;
case 2:
// _materialInstances[i]->setParameter("axisDirection", math::float3 { 0.0f, 0.0f, 1.0f});
break;
}
@@ -162,7 +182,7 @@ Gizmo::Gizmo(Engine &engine) : _engine(engine)
{arrowWidth, arrowWidth, lineLength + arrowLength}})
.material(0, _materialInstances[i])
.geometry(0, RenderableManager::PrimitiveType::TRIANGLES, vb, ib, 0, 54)
.priority(0)
.priority(6)
.layerMask(0xFF, 2)
.culling(false)
.receiveShadows(false)
@@ -175,7 +195,30 @@ Gizmo::Gizmo(Engine &engine) : _engine(engine)
// parent the axis to the center cube
transformManager.setParent(instance, cubeTransformInstance);
}
_scene->addEntities(_entities,4);
_view->setLayerEnabled(0, true); // scene assets
_view->setLayerEnabled(1, true); // gizmo
_view->setLayerEnabled(2, true); // world grid
}
Gizmo::~Gizmo() {
_scene->removeEntities(_entities, 4);
for(int i = 0; i < 4; i++) {
_engine.destroy(_materialInstances[i]);
}
_engine.destroy(_material);
for(int i = 0; i < 4; i++) {
_engine.destroy(_entities[i]);
}
_view->setScene(nullptr);
_engine.destroy(_scene);
_engine.destroy(_view);
}
void Gizmo::highlight(Entity entity) {
@@ -183,7 +226,7 @@ void Gizmo::highlight(Entity entity) {
auto renderableInstance = rm.getInstance(entity);
auto materialInstance = rm.getMaterialInstanceAt(renderableInstance, 0);
math::float3 baseColor;
math::float4 baseColor;
if(entity == x()) {
baseColor = activeColors[Axis::X];
} else if(entity == y()) {
@@ -191,10 +234,11 @@ void Gizmo::highlight(Entity entity) {
} else if(entity == z()) {
baseColor = activeColors[Axis::Z];
} else {
baseColor = math::float3 { 1.0f, 1.0f, 1.0f };
baseColor = math::float4 { 1.0f, 1.0f, 1.0f, 1.0f };
}
materialInstance->setParameter("color", baseColor);
}
void Gizmo::unhighlight() {
@@ -204,7 +248,7 @@ void Gizmo::unhighlight() {
auto renderableInstance = rm.getInstance(_entities[i]);
auto materialInstance = rm.getMaterialInstanceAt(renderableInstance, 0);
math::float3 baseColor = inactiveColors[i];
math::float4 baseColor = inactiveColors[i];
materialInstance->setParameter("color", baseColor);
}
}
@@ -226,72 +270,73 @@ void Gizmo::destroy()
}
void Gizmo::updateTransform(Camera& camera, const Viewport &vp)
void Gizmo::updateTransform()
{
auto & transformManager = _engine.getTransformManager();
auto transformInstance = transformManager.getInstance(_entities[3]);
return;
// auto & transformManager = _engine.getTransformManager();
// auto transformInstance = transformManager.getInstance(_entities[3]);
if(!transformInstance.isValid()) {
Log("No valid gizmo transform");
return;
}
// if(!transformInstance.isValid()) {
// Log("No valid gizmo transform");
// return;
// }
auto worldTransform = transformManager.getWorldTransform(transformInstance);
math::float4 worldPosition { 0.0f, 0.0f, 0.0f, 1.0f };
worldPosition = worldTransform * worldPosition;
// auto worldTransform = transformManager.getWorldTransform(transformInstance);
// math::float4 worldPosition { 0.0f, 0.0f, 0.0f, 1.0f };
// worldPosition = worldTransform * worldPosition;
// Calculate distance
float distance = length(worldPosition.xyz - camera.getPosition());
// // Calculate distance
// float distance = length(worldPosition.xyz - camera.getPosition());
const float desiredScreenSize = 3.0f; // Desired height in pixels
const float baseSize = 0.1f; // Base size in world units
// const float desiredScreenSize = 3.0f; // Desired height in pixels
// const float baseSize = 0.1f; // Base size in world units
// Get the vertical field of view of the camera (assuming it's in radians)
float fovY = camera.getFieldOfViewInDegrees(filament::Camera::Fov::VERTICAL);
// // Get the vertical field of view of the camera (assuming it's in radians)
// float fovY = camera.getFieldOfViewInDegrees(filament::Camera::Fov::VERTICAL);
// Calculate the scale needed to maintain the desired screen size
float newScale = (2.0f * distance * tan(fovY * 0.5f) * desiredScreenSize) / (baseSize * vp.height);
// // Calculate the scale needed to maintain the desired screen size
// float newScale = (2.0f * distance * tan(fovY * 0.5f) * desiredScreenSize) / (baseSize * vp.height);
if(std::isnan(newScale)) {
newScale = 1.0f;
}
// if(std::isnan(newScale)) {
// newScale = 1.0f;
// }
// Log("Distance %f, newscale %f", distance, newScale);
// // Log("Distance %f, newscale %f", distance, newScale);
auto localTransform = transformManager.getTransform(transformInstance);
// auto localTransform = transformManager.getTransform(transformInstance);
// Apply scale to gizmo
math::float3 translation;
math::quatf rotation;
math::float3 scale;
// // Apply scale to gizmo
// math::float3 translation;
// math::quatf rotation;
// math::float3 scale;
decomposeMatrix(localTransform, &translation, &rotation, &scale);
// decomposeMatrix(localTransform, &translation, &rotation, &scale);
scale = math::float3 { newScale, newScale, newScale };
// scale = math::float3 { newScale, newScale, newScale };
auto scaledTransform = composeMatrix(translation, rotation, scale);
// auto scaledTransform = composeMatrix(translation, rotation, scale);
transformManager.setTransform(transformInstance, scaledTransform);
// transformManager.setTransform(transformInstance, scaledTransform);
// The following code for logging screen position remains unchanged
auto viewSpacePos = camera.getViewMatrix() * worldPosition;
math::float4 entityScreenPos = camera.getProjectionMatrix() * viewSpacePos;
entityScreenPos /= entityScreenPos.w;
float screenX = (entityScreenPos.x * 0.5f + 0.5f) * vp.width;
float screenY = (entityScreenPos.y * 0.5f + 0.5f) * vp.height;
// Log("gizmo %f %f", screenX, screenY);
// auto viewSpacePos = camera.getViewMatrix() * worldPosition;
// math::float4 entityScreenPos = camera.getProjectionMatrix() * viewSpacePos;
// entityScreenPos /= entityScreenPos.w;
// float screenX = (entityScreenPos.x * 0.5f + 0.5f) * vp.width;
// float screenY = (entityScreenPos.y * 0.5f + 0.5f) * vp.height;
}
void Gizmo::pick(uint32_t x, uint32_t y, void (*callback)(EntityId entityId, int x, int y))
{
auto * gizmo = this;
_view->pick(x, y, [=](filament::View::PickingQueryResult const &result) {
if(result.renderable == gizmo->x() || result.renderable == gizmo->y() || result.renderable == gizmo->z()) {
gizmo->highlight(result.renderable);
callback(Entity::smuggle(result.renderable), x, y);
} else {
gizmo->unhighlight();
}
});
}
// Log("scaledTransform %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f",
// scaledTransform[0][0], scaledTransform[0][1], scaledTransform[0][2], scaledTransform[0][3],
// scaledTransform[1][0], scaledTransform[1][1], scaledTransform[1][2], scaledTransform[1][3],
// scaledTransform[2][0], scaledTransform[2][1], scaledTransform[2][2], scaledTransform[2][3],
// scaledTransform[3][0], scaledTransform[3][1], scaledTransform[3][2], scaledTransform[3][3]);
// Log("localTransform %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f",
// localTransform[0][0], localTransform[0][1], localTransform[0][2], localTransform[0][3],
// localTransform[1][0], localTransform[1][1], localTransform[1][2], localTransform[1][3],
// localTransform[2][0], localTransform[2][1], localTransform[2][2], localTransform[2][3],
// localTransform[3][0], localTransform[3][1], localTransform[3][2], localTransform[3][3]);
}