Files
cup_edit/ios/src/FilamentViewer.cpp
Nick Fisher abb43d351c add android integration & make iOS API consistent
add pubspec android plugin

update android CMakeLists

add filament android libs for linking
2022-02-06 13:52:19 +08:00

661 lines
22 KiB
C++

/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "FilamentViewer.hpp"
#include <filament/Camera.h>
#include <filament/ColorGrading.h>
#include <filament/Engine.h>
#include <filament/IndexBuffer.h>
#include <filament/RenderableManager.h>
#include <filament/Renderer.h>
#include <filament/Scene.h>
#include <filament/Skybox.h>
#include <filament/TransformManager.h>
#include <filament/VertexBuffer.h>
#include <filament/View.h>
#include <filament/Viewport.h>
#include <filament/IndirectLight.h>
#include <filament/LightManager.h>
#include <gltfio/AssetLoader.h>
#include <gltfio/FilamentAsset.h>
#include <gltfio/ResourceLoader.h>
#include <gltfio/Animator.h>
#include <camutils/Manipulator.h>
#include <utils/NameComponentManager.h>
#include <utils/JobSystem.h>
#include "math.h"
#include "FFilamentInstance.h"
#include "FFilamentAsset.h"
#include <math/mat4.h>
#include <math/quat.h>
#include <math/scalar.h>
#include <math/vec3.h>
#include <math/vec4.h>
#include <image/KtxUtility.h>
#include <chrono>
#include <iostream>
#include "Log.h"
#include <android/asset_manager.h>
#include <android/asset_manager_jni.h>
#include <android/native_window_jni.h>
#include <android/log.h>
#include <android/native_activity.h>
using namespace filament;
using namespace filament::math;
using namespace gltfio;
using namespace utils;
using namespace std::chrono;
namespace gltfio {
MaterialProvider* createUbershaderLoader(filament::Engine* engine);
}
namespace filament {
class IndirectLight;
class LightManager;
}
namespace gltfio {
MaterialProvider* createGPUMorphShaderLoader(
const void* opaqueData,
uint64_t opaqueDataSize,
const void* fadeData,
uint64_t fadeDataSize,
Engine* engine);
void decomposeMatrix(const filament::math::mat4f& mat, filament::math::float3* translation,
filament::math::quatf* rotation, filament::math::float3* scale);
}
namespace polyvox {
const double kNearPlane = 0.05; // 5 cm
const double kFarPlane = 1000.0; // 1 km
const float kScaleMultiplier = 100.0f;
const float kAperture = 16.0f;
const float kShutterSpeed = 1.0f / 125.0f;
const float kSensitivity = 100.0f;
filament::math::mat4f composeMatrix(const filament::math::float3& translation,
const filament::math::quatf& rotation, const filament::math::float3& scale) {
float tx = translation[0];
float ty = translation[1];
float tz = translation[2];
float qx = rotation[0];
float qy = rotation[1];
float qz = rotation[2];
float qw = rotation[3];
float sx = scale[0];
float sy = scale[1];
float sz = scale[2];
return filament::math::mat4f(
(1 - 2 * qy*qy - 2 * qz*qz) * sx,
(2 * qx*qy + 2 * qz*qw) * sx,
(2 * qx*qz - 2 * qy*qw) * sx,
0.f,
(2 * qx*qy - 2 * qz*qw) * sy,
(1 - 2 * qx*qx - 2 * qz*qz) * sy,
(2 * qy*qz + 2 * qx*qw) * sy,
0.f,
(2 * qx*qz + 2 * qy*qw) * sz,
(2 * qy*qz - 2 * qx*qw) * sz,
(1 - 2 * qx*qx - 2 * qy*qy) * sz,
0.f, tx, ty, tz, 1.f);
}
FilamentViewer::FilamentViewer(
void* layer,
const char* opaqueShaderPath,
const char* fadeShaderPath,
LoadResource loadResource,
FreeResource freeResource) : _layer(layer),
_loadResource(loadResource),
_freeResource(freeResource),
opaqueShaderResources(nullptr, 0, 0),
fadeShaderResources(nullptr, 0, 0),
_assetBuffer(nullptr, 0, 0) {
_engine = Engine::create(Engine::Backend::OPENGL);
_renderer = _engine->createRenderer();
_renderer->setDisplayInfo({ .refreshRate = 60.0f,
.presentationDeadlineNanos = (uint64_t)0,
.vsyncOffsetNanos = (uint64_t)0 });
_scene = _engine->createScene();
Entity camera = EntityManager::get().create();
_mainCamera = _engine->createCamera(camera);
_view = _engine->createView();
_view->setScene(_scene);
_view->setCamera(_mainCamera);
_cameraFocalLength = 28.0f;
_mainCamera->setExposure(kAperture, kShutterSpeed, kSensitivity);
_swapChain = _engine->createSwapChain(_layer);
View::DynamicResolutionOptions options;
options.enabled = true;
// options.homogeneousScaling = homogeneousScaling;
// options.minScale = filament::math::float2{ minScale };
// options.maxScale = filament::math::float2{ maxScale };
//options.sharpness = sharpness;
options.quality = View::QualityLevel::MEDIUM;;
_view->setDynamicResolutionOptions(options);
View::MultiSampleAntiAliasingOptions multiSampleAntiAliasingOptions;
multiSampleAntiAliasingOptions.enabled = true;
_view->setMultiSampleAntiAliasingOptions(multiSampleAntiAliasingOptions);
_materialProvider = gltfio::createUbershaderLoader(_engine);
EntityManager& em = EntityManager::get();
_ncm = new NameComponentManager(em);
_assetLoader = AssetLoader::create({_engine, _materialProvider, _ncm, &em});
_resourceLoader = new ResourceLoader(
{.engine = _engine, .normalizeSkinningWeights = true, .recomputeBoundingBoxes = false});
manipulator =
Manipulator<float>::Builder().orbitHomePosition(0.0f, 0.0f, 0.0f).targetPosition(0.0f, 0.0f, -4.0f).build(Mode::ORBIT);
_asset = nullptr;
}
FilamentViewer::~FilamentViewer() {
}
Renderer* FilamentViewer::getRenderer() {
return _renderer;
}
void FilamentViewer::createSwapChain(void* surface) {
_swapChain = _engine->createSwapChain(surface);
// Log("swapchain created.");
}
void FilamentViewer::destroySwapChain() {
if(_swapChain) {
_engine->destroy(_swapChain);
_swapChain = nullptr;
}
// Log("swapchain destroyed.");
}
void FilamentViewer::applyWeights(float* weights, int count) {
for (size_t i = 0, c = _asset->getEntityCount(); i != c; ++i) {
_asset->setMorphWeights(
_asset->getEntities()[i],
weights,
count
);
}
}
void FilamentViewer::loadResources(string relativeResourcePath) {
const char* const* const resourceUris = _asset->getResourceUris();
const size_t resourceUriCount = _asset->getResourceUriCount();
Log("Loading %d resources for asset", resourceUriCount);
for (size_t i = 0; i < resourceUriCount; i++) {
string uri = relativeResourcePath + string(resourceUris[i]);
ResourceBuffer buf = _loadResource(uri.c_str());
// using FunctionCallback = std::function<void(void*, unsigned int, void *)>;
// auto cb = [&] (void * ptr, unsigned int len, void * misc) {
// };
// FunctionCallback fcb = cb;
ResourceLoader::BufferDescriptor b(
buf.data, buf.size);
_resourceLoader->addResourceData(resourceUris[i], std::move(b));
_freeResource(buf);
}
_resourceLoader->loadResources(_asset);
const Entity* entities = _asset->getEntities();
RenderableManager& rm = _engine->getRenderableManager();
for(int i =0; i< _asset->getEntityCount(); i++) {
Entity e = entities[i];
auto inst = rm.getInstance(e);
rm.setCulling(inst, false);
}
_animator = _asset->getAnimator();
_scene->addEntities(_asset->getEntities(), _asset->getEntityCount());
};
void FilamentViewer::releaseSourceAssets() {
Log("Releasing source data");
_asset->releaseSourceData();
// _freeResource(opaqueShaderResources);
// _freeResource(fadeShaderResources);
}
void FilamentViewer::loadGlb(const char* const uri) {
Log("Loading GLB at URI %s", uri);
if(_asset) {
_resourceLoader->evictResourceData();
_scene->removeEntities(_asset->getEntities(), _asset->getEntityCount());
_assetLoader->destroyAsset(_asset);
_freeResource(_assetBuffer);
}
_asset = nullptr;
_animator = nullptr;
ResourceBuffer rbuf = _loadResource(uri);
_asset = _assetLoader->createAssetFromBinary(
(const uint8_t*)rbuf.data, rbuf.size);
if (!_asset) {
Log("Unknown error loading GLB asset.");
exit(1);
}
int entityCount = _asset->getEntityCount();
_scene->addEntities(_asset->getEntities(), entityCount);
Log("Added %d entities to scene", entityCount);
_resourceLoader->loadResources(_asset);
_animator = _asset->getAnimator();
const Entity* entities = _asset->getEntities();
RenderableManager& rm = _engine->getRenderableManager();
for(int i =0; i< _asset->getEntityCount(); i++) {
Entity e = entities[i];
auto inst = rm.getInstance(e);
rm.setCulling(inst, false);
}
_freeResource(rbuf);
Log("Successfully loaded GLB.");
}
void FilamentViewer::loadGltf(const char* const uri, const char* const relativeResourcePath) {
Log("Loading GLTF at URI %s", uri);
if(_asset) {
Log("Asset already exists");
_resourceLoader->evictResourceData();
_scene->removeEntities(_asset->getEntities(), _asset->getEntityCount());
_assetLoader->destroyAsset(_asset);
_freeResource(_assetBuffer);
}
_asset = nullptr;
_animator = nullptr;
_assetBuffer = _loadResource(uri);
// Parse the glTF file and create Filament entities.
Log("Creating asset from JSON");
_asset = _assetLoader->createAssetFromJson((uint8_t*)_assetBuffer.data, _assetBuffer.size);
Log("Created asset from JSON");
if (!_asset) {
Log("Unable to parse asset");
exit(1);
}
Log("Loading relative resources");
loadResources(string(relativeResourcePath) + string("/"));
Log("Loaded relative resources");
// _asset->releaseSourceData();
Log("Load complete for GLTF at URI %s", uri);
transformToUnitCube();
}
void FilamentViewer::setCamera(const char* cameraName) {
FFilamentAsset* asset = (FFilamentAsset*)_asset;
gltfio::NodeMap &sourceNodes = asset->isInstanced() ? asset->mInstances[0]->nodeMap
: asset->mNodeMap;
for (auto pair : sourceNodes) {
cgltf_node const *node = pair.first;
if(node->camera) {
Log("Got camera %s of type %s ", node->camera->name, node->camera->type);
if(strcmp(cameraName, node->camera->name) == 0) {
filament::math::mat4 mat(
node->matrix[0],
node->matrix[1],
node->matrix[2],
node->matrix[3],
node->matrix[4],
node->matrix[5],
node->matrix[6],
node->matrix[7],
node->matrix[8],
node->matrix[9],
node->matrix[10],
node->matrix[11],
node->parent->translation[0],
node->parent->translation[1],
node->parent->translation[2],
1
);
quatf rot1(node->parent->rotation[0],node->parent->rotation[1], node->parent->rotation[2], node->parent->rotation[3]);
quatf rot2(node->rotation[0],node->rotation[1], node->rotation[2], node->rotation[3]);
quatf rot3 = rot1 * rot2;
filament::math::mat4 rotm(rot3);
filament::math::mat4 result = mat * rotm;
_engine->getTransformManager().setTransform(
_engine->getTransformManager().getInstance(_mainCamera->getEntity()), result);
}
}
}
}
StringList FilamentViewer::getTargetNames(const char* meshName) {
FFilamentAsset* asset = (FFilamentAsset*)_asset;
NodeMap &sourceNodes = asset->isInstanced() ? asset->mInstances[0]->nodeMap : asset->mNodeMap;
if(sourceNodes.empty()) {
Log("Asset source nodes empty?");
return StringList(nullptr, 0);
}
Log("Fetching morph target names for mesh %s", meshName);
for (auto pair : sourceNodes) {
cgltf_node const *node = pair.first;
cgltf_mesh const *mesh = node->mesh;
if(node->camera) {
Log("Got camera %s of type %s", node->camera->name, node->camera->type);
}
if (mesh) {
Log("Mesh : %s ",mesh->name);
if(strcmp(meshName, mesh->name) == 0) {
return StringList((const char**)mesh->target_names, (int) mesh->target_names_count);
}
} else {
Log("No mesh attached to node");
}
}
return StringList(nullptr, 0);
}
void FilamentViewer::loadSkybox(const char* const skyboxPath, const char* const iblPath, AAssetManager* am) {
ResourceBuffer skyboxBuffer = _loadResource(skyboxPath);
image::KtxBundle* skyboxBundle =
new image::KtxBundle(static_cast<const uint8_t*>(skyboxBuffer.data), static_cast<uint32_t>(skyboxBuffer.size));
_skyboxTexture = image::ktx::createTexture(_engine, skyboxBundle, false);
_skybox = filament::Skybox::Builder().environment(_skyboxTexture).build(*_engine);
// _skybox = Skybox::Builder().color({0.1, 0.125, 0.25, 1.0}).build(*_engine);
_scene->setSkybox(_skybox);
_freeResource(skyboxBuffer);
Log("Loading IBL from %s", iblPath);
// Load IBL.
ResourceBuffer iblBuffer = _loadResource(iblPath);
image::KtxBundle* iblBundle = new image::KtxBundle(
static_cast<const uint8_t*>(iblBuffer.data), static_cast<uint32_t>(iblBuffer.size));
math::float3 harmonics[9];
iblBundle->getSphericalHarmonics(harmonics);
_iblTexture = image::ktx::createTexture(_engine, iblBundle, false);
_indirectLight = IndirectLight::Builder()
.reflections(_iblTexture)
.irradiance(3, harmonics)
.intensity(30000.0f)
.build(*_engine);
_scene->setIndirectLight(_indirectLight);
_freeResource(iblBuffer);
// Always add a direct light source since it is required for shadowing.
_sun = EntityManager::get().create();
LightManager::Builder(LightManager::Type::DIRECTIONAL)
.color(Color::cct(6500.0f))
.intensity(100000.0f)
.direction(math::float3(0.0f, 1.0f, 0.0f))
.castShadows(true)
.build(*_engine, _sun);
_scene->addEntity(_sun);
Log("Skybox/IBL load complete.");
}
void FilamentViewer::transformToUnitCube() {
if (!_asset) {
Log("No asset, cannot transform.");
return;
}
auto& tm = _engine->getTransformManager();
auto aabb = _asset->getBoundingBox();
auto center = aabb.center();
auto halfExtent = aabb.extent();
auto maxExtent = max(halfExtent) * 2;
auto scaleFactor = 2.0f / maxExtent;
auto transform = math::mat4f::scaling(scaleFactor) * math::mat4f::translation(-center);
tm.setTransform(tm.getInstance(_asset->getRoot()), transform);
}
void FilamentViewer::cleanup() {
_resourceLoader->asyncCancelLoad();
_assetLoader->destroyAsset(_asset);
_materialProvider->destroyMaterials();
AssetLoader::destroy(&_assetLoader);
_freeResource(_assetBuffer);
};
void FilamentViewer::render() {
if (!_view || !_mainCamera || !_swapChain) {
Log("Not ready for rendering");
return;
}
math::float3 eye, target, upward;
manipulator->getLookAt(&eye, &target, &upward);
_mainCamera->lookAt(eye, target, upward);
// Render the scene, unless the renderer wants to skip the frame.
if (_renderer->beginFrame(_swapChain)) {
_renderer->render(_view);
_renderer->endFrame();
}
}
void FilamentViewer::updateViewportAndCameraProjection(int width, int height, float contentScaleFactor) {
if (!_view || !_mainCamera) {
Log("Skipping camera update, no view or camrea");
return;
}
const uint32_t _width = width * contentScaleFactor;
const uint32_t _height = height * contentScaleFactor;
_view->setViewport({0, 0, _width, _height});
const double aspect = (double)width / height;
_mainCamera->setLensProjection(_cameraFocalLength, aspect, kNearPlane, kFarPlane);
Log("Set viewport to %d %d", _width, _height);
}
}
//void FilamentViewer::updateAnimation(AnimationBuffer animation, std::function<void(int)> moo) {
// if(morphAnimationBuffer.frameIndex >= animation.numFrames) {
// this.animation = null;
// return;
// }
//
// if(animation.frameIndex == -1) {
// animation->frameIndex++;
// animation->lastTime = std::chrono::high_resolution_clock::now();
// callback(); // applyWeights(morphAnimationBuffer->frameData, morphAnimationBuffer->numWeights);
// } else {
// duration dur = std::chrono::high_resolution_clock::now() - morphAnimationBuffer->lastTime;
// float msElapsed = dur.count();
// if(msElapsed > animation->frameLength) {
// animation->frameIndex++;
// animation->lastTime = std::chrono::high_resolution_clock::now();
// callback(); // applyWeights(frameData + (frameIndex * numWeights), numWeights);
// }
// }
//}
// void FilamentViewer::updateMorphAnimation() {
// if(morphAnimationBuffer->frameIndex >= morphAnimationBuffer->numFrames) {
// morphAnimationBuffer = nullptr;
// return;
// }
// if(morphAnimationBuffer->frameIndex == -1) {
// morphAnimationBuffer->frameIndex++;
// morphAnimationBuffer->startTime = std::chrono::high_resolution_clock::now();
// applyWeights(morphAnimationBuffer->frameData, morphAnimationBuffer->numWeights);
// } else {
// std::chrono::duration<double, std::milli> dur = std::chrono::high_resolution_clock::now() - morphAnimationBuffer->startTime;
// int frameIndex = dur.count() / morphAnimationBuffer->frameLength;
// if(frameIndex != morphAnimationBuffer->frameIndex) {
// morphAnimationBuffer->frameIndex = frameIndex;
// applyWeights(morphAnimationBuffer->frameData + (morphAnimationBuffer->frameIndex * morphAnimationBuffer->numWeights), morphAnimationBuffer->numWeights);
// }
// }
// }
// void FilamentViewer::updateEmbeddedAnimation() {
// duration<double> dur = duration_cast<duration<double>>(std::chrono::high_resolution_clock::now() - embeddedAnimationBuffer->lastTime);
// float startTime = 0;
// if(!embeddedAnimationBuffer->hasStarted) {
// embeddedAnimationBuffer->hasStarted = true;
// embeddedAnimationBuffer->lastTime = std::chrono::high_resolution_clock::now();
// } else if(dur.count() >= embeddedAnimationBuffer->duration) {
// embeddedAnimationBuffer = nullptr;
// return;
// } else {
// startTime = dur.count();
// }
// _animator->applyAnimation(embeddedAnimationBuffer->animationIndex, startTime);
// _animator->updateBoneMatrices();
// }
// //
// //if(morphAnimationBuffer.frameIndex >= morphAnimationBuffer.numFrames) {
// // this.morphAnimationBuffer = null;
// // return;
// //}
// //
// //if(morphAnimationBuffer.frameIndex == -1) {
// // applyWeights(morphAnimationBuffer->frameData, morphAnimationBuffer->numWeights);
// // morphAnimationBuffer->frameIndex++;
// // morphAnimationBuffer->lastTime = std::chrono::high_resolution_clock::now();
// //} else {
// // duration dur = std::chrono::high_resolution_clock::now() - morphAnimationBuffer->lastTime;
// // float msElapsed = dur.count();
// // if(msElapsed > morphAnimationBuffer->frameLength) {
// // frameIndex++;
// // applyWeights(frameData + (frameIndex * numWeights), numWeights);
// // morphAnimationBuffer->lastTime = std::chrono::high_resolution_clock::now();
// // }
// //}
// void FilamentViewer::playAnimation(int index) {
// embeddedAnimationBuffer = make_unique<EmbeddedAnimationBuffer>(index, _animator->getAnimationDuration(index));
// }
// void FilamentViewer::animateWeights(float* data, int numWeights, int length, float frameRate) {
// morphAnimationBuffer = std::make_unique<MorphAnimationBuffer>(data, numWeights, length / numWeights, 1000 / frameRate );
// }
// if(shaderPath) {
// opaqueShaderResources = _loadResource(opaqueShaderPath);
// fadeShaderResources = _loadResource(fadeShaderPath);
// _materialProvider = createGPUMorphShaderLoader(
// opaqueShaderResources.data,
// opaqueShaderResources.size,
// fadeShaderResources.data,
// fadeShaderResources.size,
// _engine);
// } else {
// }
// void printWeights(float* weights, int numWeights) {
// for(int i =0; i < numWeights; i++) {
// // std::cout << weights[i];
// }
// }
// void FilamentViewer::createMorpher(const char* meshName, int* primitives, int numPrimitives) {
// // morphHelper = new gltfio::GPUMorphHelper((FFilamentAsset*)_asset, meshName, primitives, numPrimitives);
// // morphHelper = new gltfio::CPUMorpher(((FFilamentAsset)*_asset, (FFilamentInstance*)_asset));
// }
// void FilamentViewer::animateBones() {
// }
// Entity entity = _asset->getFirstEntityByName("CC_Base_JawRoot");
// if(!entity) {
// return;
// }
// TransformManager& transformManager = _engine->getTransformManager();
// TransformManager::Instance node = transformManager.getInstance( entity);
// mat4f xform = transformManager.getTransform(node);
// float3 scale;
// quatf rotation;
// float3 translation;
// decomposeMatrix(xform, &translation, &rotation, &scale);
// // const quatf srcQuat { weights[0] * 0.9238,0,weights[0] * 0.3826, 0 };
// // float3 { scale[0] * (1.0f - weights[0]), scale[1] * (1.0f - weights[1]), scale[2] * (1.0f - weights[2]) }
// // xform = composeMatrix(translation + float3 { weights[0], weights[1], weights[2] }, rotation, scale );
// transformManager.setTransform(node, xform);
// }